Diego García, S. Kontaxis, A. Hernández-Vicente, D. Hernando, Javier Milagro, E. Pueyo, N. Garatachea, R. Bailón, J. Lázaro
{"title":"基于心电图呼吸速率的通气阈值估计","authors":"Diego García, S. Kontaxis, A. Hernández-Vicente, D. Hernando, Javier Milagro, E. Pueyo, N. Garatachea, R. Bailón, J. Lázaro","doi":"10.23919/cinc53138.2021.9662701","DOIUrl":null,"url":null,"abstract":"The purpose of this work is to study the feasibility of estimating the first and second ventilatory thresholds (VT1 and VT2, respectively) by using electrocardiogram (ECG)-derived respiratory rate during exercise testing. The ECGs of 25 healthy volunteers during cycle ergometer exercise test with increasing workload were analyzed. Time-varying respiratory rate was estimated from an ECG-derived respiration signal obtained from QRS slopes' range method. VT1 and VT2 were estimated as the points of maximum change in respiratory rate slope using polynomial spline smoothing. Reference VT1 and VT2 were determined from the ventilatory equivalents of $O_{2}$ and $CO_{2}$. Estimation errors (in watts) of -13.96 (54.84) W for VT1 and -8.06 (39.63) Wfor VT2 (median (interquartile range)) were obtained, suggesting that ventilatory thresholds can be estimated from solely the ECG signal.","PeriodicalId":126746,"journal":{"name":"2021 Computing in Cardiology (CinC)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ventilatory Thresholds Estimation Based on ECG-derived Respiratory Rate\",\"authors\":\"Diego García, S. Kontaxis, A. Hernández-Vicente, D. Hernando, Javier Milagro, E. Pueyo, N. Garatachea, R. Bailón, J. Lázaro\",\"doi\":\"10.23919/cinc53138.2021.9662701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this work is to study the feasibility of estimating the first and second ventilatory thresholds (VT1 and VT2, respectively) by using electrocardiogram (ECG)-derived respiratory rate during exercise testing. The ECGs of 25 healthy volunteers during cycle ergometer exercise test with increasing workload were analyzed. Time-varying respiratory rate was estimated from an ECG-derived respiration signal obtained from QRS slopes' range method. VT1 and VT2 were estimated as the points of maximum change in respiratory rate slope using polynomial spline smoothing. Reference VT1 and VT2 were determined from the ventilatory equivalents of $O_{2}$ and $CO_{2}$. Estimation errors (in watts) of -13.96 (54.84) W for VT1 and -8.06 (39.63) Wfor VT2 (median (interquartile range)) were obtained, suggesting that ventilatory thresholds can be estimated from solely the ECG signal.\",\"PeriodicalId\":126746,\"journal\":{\"name\":\"2021 Computing in Cardiology (CinC)\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/cinc53138.2021.9662701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/cinc53138.2021.9662701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ventilatory Thresholds Estimation Based on ECG-derived Respiratory Rate
The purpose of this work is to study the feasibility of estimating the first and second ventilatory thresholds (VT1 and VT2, respectively) by using electrocardiogram (ECG)-derived respiratory rate during exercise testing. The ECGs of 25 healthy volunteers during cycle ergometer exercise test with increasing workload were analyzed. Time-varying respiratory rate was estimated from an ECG-derived respiration signal obtained from QRS slopes' range method. VT1 and VT2 were estimated as the points of maximum change in respiratory rate slope using polynomial spline smoothing. Reference VT1 and VT2 were determined from the ventilatory equivalents of $O_{2}$ and $CO_{2}$. Estimation errors (in watts) of -13.96 (54.84) W for VT1 and -8.06 (39.63) Wfor VT2 (median (interquartile range)) were obtained, suggesting that ventilatory thresholds can be estimated from solely the ECG signal.