Zheng Li, Wenjun Wei, Xiaochun Wu, Yang Liu, Jinbo Yu
{"title":"基于VMD-KPCA和模糊聚类的S700K道岔运行状态诊断","authors":"Zheng Li, Wenjun Wei, Xiaochun Wu, Yang Liu, Jinbo Yu","doi":"10.18280/ejee.230406","DOIUrl":null,"url":null,"abstract":"S700K turnout is the key equipment of railway line conversion. The diagnosis of S700K turnout in a normal, sub-health, and fault running state is the primary premise to ensure the safe operation of the railway. Aiming at the consistency between the characteristics of the power curve of S700K turnout and its state information, this paper proposes a new algorithm based on variational mode decomposition (VMD) and kernel principal component analysis (KPCA) to extract the characteristics of the power curve of S700K turnout. It uses fuzzy clustering analysis to diagnose the running state of S700K turnout. First, to extract the detailed components of the action power curve, it is decomposed into intrinsic mode function with limited bandwidth (BIMF) by VMD. Secondly, the multi-scale permutation entropy (MPE) is used to characterize the signal complexity of the power curve and different BIMF components, which are taken as the running state feature set. After KPCA analysis, eigenvalues with a contribution rate greater than 95% are selected as the state eigenvector. The experimental results show that the diagnosis algorithm can effectively identify the running state of S700K turnout, meet the characteristics of fewer fault samples of S700K turnout, and do not need to train in advance, which is of great significance for field guidance.","PeriodicalId":340029,"journal":{"name":"European Journal of Electrical Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Running Status Diagnosis of S700K Turnout Based on VMD-KPCA and Fuzzy Clustering\",\"authors\":\"Zheng Li, Wenjun Wei, Xiaochun Wu, Yang Liu, Jinbo Yu\",\"doi\":\"10.18280/ejee.230406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"S700K turnout is the key equipment of railway line conversion. The diagnosis of S700K turnout in a normal, sub-health, and fault running state is the primary premise to ensure the safe operation of the railway. Aiming at the consistency between the characteristics of the power curve of S700K turnout and its state information, this paper proposes a new algorithm based on variational mode decomposition (VMD) and kernel principal component analysis (KPCA) to extract the characteristics of the power curve of S700K turnout. It uses fuzzy clustering analysis to diagnose the running state of S700K turnout. First, to extract the detailed components of the action power curve, it is decomposed into intrinsic mode function with limited bandwidth (BIMF) by VMD. Secondly, the multi-scale permutation entropy (MPE) is used to characterize the signal complexity of the power curve and different BIMF components, which are taken as the running state feature set. After KPCA analysis, eigenvalues with a contribution rate greater than 95% are selected as the state eigenvector. The experimental results show that the diagnosis algorithm can effectively identify the running state of S700K turnout, meet the characteristics of fewer fault samples of S700K turnout, and do not need to train in advance, which is of great significance for field guidance.\",\"PeriodicalId\":340029,\"journal\":{\"name\":\"European Journal of Electrical Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18280/ejee.230406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18280/ejee.230406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Running Status Diagnosis of S700K Turnout Based on VMD-KPCA and Fuzzy Clustering
S700K turnout is the key equipment of railway line conversion. The diagnosis of S700K turnout in a normal, sub-health, and fault running state is the primary premise to ensure the safe operation of the railway. Aiming at the consistency between the characteristics of the power curve of S700K turnout and its state information, this paper proposes a new algorithm based on variational mode decomposition (VMD) and kernel principal component analysis (KPCA) to extract the characteristics of the power curve of S700K turnout. It uses fuzzy clustering analysis to diagnose the running state of S700K turnout. First, to extract the detailed components of the action power curve, it is decomposed into intrinsic mode function with limited bandwidth (BIMF) by VMD. Secondly, the multi-scale permutation entropy (MPE) is used to characterize the signal complexity of the power curve and different BIMF components, which are taken as the running state feature set. After KPCA analysis, eigenvalues with a contribution rate greater than 95% are selected as the state eigenvector. The experimental results show that the diagnosis algorithm can effectively identify the running state of S700K turnout, meet the characteristics of fewer fault samples of S700K turnout, and do not need to train in advance, which is of great significance for field guidance.