利用资源有限的嵌入式设备对组织病理图像进行分类的微型概率图

Anil Johny, K. Madhusoodanan
{"title":"利用资源有限的嵌入式设备对组织病理图像进行分类的微型概率图","authors":"Anil Johny, K. Madhusoodanan","doi":"10.1109/ICITIIT54346.2022.9744131","DOIUrl":null,"url":null,"abstract":"Prediction of malignancy in histopathology images using CNN is mostly performed using cloud services suffers from network latency. We propose a novel, efficient method to classify whole slide histopathology images using modular and portable embedded devices to detect the presence of cell abnormality. The proposed method generates probability maps which indicates predictions so that a bird’s-eye view of tissue malignancy can be obtained. The miniature map(mini-map) of histopathology image is the overview of binary class probabilities at the patient level. The computational overhead of device is reduced as well as prediction will be faster while using custom-trained model. The round trip time is also reduced as the computing occurs near the end-device itself. The obtained predictions in mini-map can be viewed in any portable device consuming minimum processing time as the size of the map is only few kilo-bytes. This method is found to be suitable to assist medical practitioners in patient diagnosis.","PeriodicalId":184353,"journal":{"name":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniature probability maps using resource limited embedded device for classification of histopathological images\",\"authors\":\"Anil Johny, K. Madhusoodanan\",\"doi\":\"10.1109/ICITIIT54346.2022.9744131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Prediction of malignancy in histopathology images using CNN is mostly performed using cloud services suffers from network latency. We propose a novel, efficient method to classify whole slide histopathology images using modular and portable embedded devices to detect the presence of cell abnormality. The proposed method generates probability maps which indicates predictions so that a bird’s-eye view of tissue malignancy can be obtained. The miniature map(mini-map) of histopathology image is the overview of binary class probabilities at the patient level. The computational overhead of device is reduced as well as prediction will be faster while using custom-trained model. The round trip time is also reduced as the computing occurs near the end-device itself. The obtained predictions in mini-map can be viewed in any portable device consuming minimum processing time as the size of the map is only few kilo-bytes. This method is found to be suitable to assist medical practitioners in patient diagnosis.\",\"PeriodicalId\":184353,\"journal\":{\"name\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITIIT54346.2022.9744131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Innovative Trends in Information Technology (ICITIIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITIIT54346.2022.9744131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

使用CNN预测组织病理图像中的恶性肿瘤,主要是使用云服务进行的,受到网络延迟的影响。我们提出了一种新的,有效的方法来分类整个切片组织病理学图像使用模块化和便携式嵌入式设备来检测细胞异常的存在。提出的方法生成概率图,该概率图表示预测,以便获得组织恶性肿瘤的鸟瞰图。组织病理图像的微缩图(mini-map)是在患者水平上对二分类概率的概述。使用自定义训练模型可以减少设备的计算开销,并且预测速度更快。由于计算发生在终端设备本身附近,往返时间也减少了。在迷你地图中获得的预测结果可以在任何便携式设备上查看,因为地图的大小只有几千字节。这种方法被发现是适合于协助医生在病人诊断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Miniature probability maps using resource limited embedded device for classification of histopathological images
Prediction of malignancy in histopathology images using CNN is mostly performed using cloud services suffers from network latency. We propose a novel, efficient method to classify whole slide histopathology images using modular and portable embedded devices to detect the presence of cell abnormality. The proposed method generates probability maps which indicates predictions so that a bird’s-eye view of tissue malignancy can be obtained. The miniature map(mini-map) of histopathology image is the overview of binary class probabilities at the patient level. The computational overhead of device is reduced as well as prediction will be faster while using custom-trained model. The round trip time is also reduced as the computing occurs near the end-device itself. The obtained predictions in mini-map can be viewed in any portable device consuming minimum processing time as the size of the map is only few kilo-bytes. This method is found to be suitable to assist medical practitioners in patient diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HomeID: Home Visitors Recognition using Internet of Things and Deep Learning Algorithms Auto-Encoder LSTM for learning dependency of traffic flow by sequencing spatial-temporal traffic flow rate: A speed up technique for routing vehicles between origin and destination A Statistical Study and Analysis to Identify the Importance of Open-source Software Data Imputation Techniques: An Empirical Study using Chronic Kidney Disease and Life Expectancy Datasets Miniature probability maps using resource limited embedded device for classification of histopathological images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1