免提:一个机器人增强现实远程操作系统

Cristina Nuzzi, S. Ghidini, R. Pagani, S. Pasinetti, Gabriele Coffetti, G. Sansoni
{"title":"免提:一个机器人增强现实远程操作系统","authors":"Cristina Nuzzi, S. Ghidini, R. Pagani, S. Pasinetti, Gabriele Coffetti, G. Sansoni","doi":"10.1109/UR49135.2020.9144841","DOIUrl":null,"url":null,"abstract":"In this paper the novel teleoperation method \"Hands-Free\" is presented. Hands-Free is a vision-based augmented reality system that allows users to teleoperate a robot end-effector with their hands in real time. The system leverages OpenPose neural network to detect the human operator hand in a given workspace, achieving an average inference time of 0.15 s. The user index position is extracted from the image and converted in real world coordinates to move the robot end-effector in a different workspace.The user hand skeleton is visualized in real-time moving in the actual robot workspace, allowing the user to teleoperate the robot intuitively, regardless of the differences between the user workspace and the robot workspace.Since a set of calibration procedures is involved to convert the index position to the robot end-effector position, we designed three experiments to determine the different errors introduced by conversion. A detailed explanation of the mathematical principles adopted in this work is provided in the paper.Finally, the proposed system has been developed using ROS and is publicly available at the following GitHub repository: https://github.com/Krissy93/hands-free-project.","PeriodicalId":360208,"journal":{"name":"2020 17th International Conference on Ubiquitous Robots (UR)","volume":"482 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Hands-Free: a robot augmented reality teleoperation system\",\"authors\":\"Cristina Nuzzi, S. Ghidini, R. Pagani, S. Pasinetti, Gabriele Coffetti, G. Sansoni\",\"doi\":\"10.1109/UR49135.2020.9144841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper the novel teleoperation method \\\"Hands-Free\\\" is presented. Hands-Free is a vision-based augmented reality system that allows users to teleoperate a robot end-effector with their hands in real time. The system leverages OpenPose neural network to detect the human operator hand in a given workspace, achieving an average inference time of 0.15 s. The user index position is extracted from the image and converted in real world coordinates to move the robot end-effector in a different workspace.The user hand skeleton is visualized in real-time moving in the actual robot workspace, allowing the user to teleoperate the robot intuitively, regardless of the differences between the user workspace and the robot workspace.Since a set of calibration procedures is involved to convert the index position to the robot end-effector position, we designed three experiments to determine the different errors introduced by conversion. A detailed explanation of the mathematical principles adopted in this work is provided in the paper.Finally, the proposed system has been developed using ROS and is publicly available at the following GitHub repository: https://github.com/Krissy93/hands-free-project.\",\"PeriodicalId\":360208,\"journal\":{\"name\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"volume\":\"482 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 17th International Conference on Ubiquitous Robots (UR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UR49135.2020.9144841\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 17th International Conference on Ubiquitous Robots (UR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UR49135.2020.9144841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种新的远程操作方法“免提”。hands - free是一种基于视觉的增强现实系统,允许用户用手实时远程操作机器人末端执行器。该系统利用OpenPose神经网络在给定的工作空间中检测人类操作员的手,平均推理时间为0.15 s。从图像中提取用户索引位置并转换为现实世界坐标,以便在不同的工作空间中移动机器人末端执行器。用户的手骨架在实际机器人工作空间中实时移动,允许用户直观地远程操作机器人,而不考虑用户工作空间和机器人工作空间之间的差异。由于将指标位置转换为机器人末端执行器位置涉及一套校准程序,因此我们设计了三个实验来确定转换带来的不同误差。本文对本文所采用的数学原理作了详细的说明。最后,建议的系统是使用ROS开发的,并且可以在以下GitHub存储库中公开获得:https://github.com/Krissy93/hands-free-project。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hands-Free: a robot augmented reality teleoperation system
In this paper the novel teleoperation method "Hands-Free" is presented. Hands-Free is a vision-based augmented reality system that allows users to teleoperate a robot end-effector with their hands in real time. The system leverages OpenPose neural network to detect the human operator hand in a given workspace, achieving an average inference time of 0.15 s. The user index position is extracted from the image and converted in real world coordinates to move the robot end-effector in a different workspace.The user hand skeleton is visualized in real-time moving in the actual robot workspace, allowing the user to teleoperate the robot intuitively, regardless of the differences between the user workspace and the robot workspace.Since a set of calibration procedures is involved to convert the index position to the robot end-effector position, we designed three experiments to determine the different errors introduced by conversion. A detailed explanation of the mathematical principles adopted in this work is provided in the paper.Finally, the proposed system has been developed using ROS and is publicly available at the following GitHub repository: https://github.com/Krissy93/hands-free-project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Accuracy Improvement of Fisheye Stereo Camera by Combining Multiple Disparity Offset Maps Cloud Services for Culture Aware Conversation: Socially Assistive Robots and Virtual Assistants Robotic Path Planning for Inspection of Complex-Shaped Objects Prediction of expected Angle of knee joint of human lower limbs based on leg interaction A CNN-LSTM Hybrid Model for Ankle Joint Motion Recognition Method Based on sEMG
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1