{"title":"带储能系统的光伏系统最优功率点跟踪","authors":"M. Wattenberg, M. Pfost","doi":"10.1109/ISSCS.2017.8034940","DOIUrl":null,"url":null,"abstract":"This paper presents a control strategy for optimal utilization of photovoltaic (PV) generated power in conjunction with an Energy Storage System (ESS). The ESS is specifically designed to be retrofitted into existing PV systems in an end-user application. It can be attached in parallel to the PV system and connects to existing DC/AC inverters. In particular, the study covers the impact such a modification has on the output power of existing PV panels. A distinct degradation of PV output power was found due to the different power characteristics of PV panel and ESS. To overcome such degradation a novel feedback system is proposed. The feedback system continuously modifies the power characteristic of the ESS to match the PV panel and thus achieves optimal power utilization. Impact on PV and Maximum Power Point tracking performance is analyzed. Simulation of the proposed system is performed in MATLAB/Simulink. The results are found to be satisfactory.","PeriodicalId":338255,"journal":{"name":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Power Point tracking for PV-systems with retrofitted Energy Storage Systems\",\"authors\":\"M. Wattenberg, M. Pfost\",\"doi\":\"10.1109/ISSCS.2017.8034940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a control strategy for optimal utilization of photovoltaic (PV) generated power in conjunction with an Energy Storage System (ESS). The ESS is specifically designed to be retrofitted into existing PV systems in an end-user application. It can be attached in parallel to the PV system and connects to existing DC/AC inverters. In particular, the study covers the impact such a modification has on the output power of existing PV panels. A distinct degradation of PV output power was found due to the different power characteristics of PV panel and ESS. To overcome such degradation a novel feedback system is proposed. The feedback system continuously modifies the power characteristic of the ESS to match the PV panel and thus achieves optimal power utilization. Impact on PV and Maximum Power Point tracking performance is analyzed. Simulation of the proposed system is performed in MATLAB/Simulink. The results are found to be satisfactory.\",\"PeriodicalId\":338255,\"journal\":{\"name\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"volume\":\"256 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Symposium on Signals, Circuits and Systems (ISSCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2017.8034940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Symposium on Signals, Circuits and Systems (ISSCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2017.8034940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimal Power Point tracking for PV-systems with retrofitted Energy Storage Systems
This paper presents a control strategy for optimal utilization of photovoltaic (PV) generated power in conjunction with an Energy Storage System (ESS). The ESS is specifically designed to be retrofitted into existing PV systems in an end-user application. It can be attached in parallel to the PV system and connects to existing DC/AC inverters. In particular, the study covers the impact such a modification has on the output power of existing PV panels. A distinct degradation of PV output power was found due to the different power characteristics of PV panel and ESS. To overcome such degradation a novel feedback system is proposed. The feedback system continuously modifies the power characteristic of the ESS to match the PV panel and thus achieves optimal power utilization. Impact on PV and Maximum Power Point tracking performance is analyzed. Simulation of the proposed system is performed in MATLAB/Simulink. The results are found to be satisfactory.