比特币价格预测的Hparam参数LSTM超参数优化

I. Kervanci, Fatih Akay
{"title":"比特币价格预测的Hparam参数LSTM超参数优化","authors":"I. Kervanci, Fatih Akay","doi":"10.35377/saucis...1172027","DOIUrl":null,"url":null,"abstract":"Machine learning and deep learning algorithms produce very different results with different examples of their hyperparameters. Algorithm parameters require optimization because they aren't specific for all problems. In this paper Long Short-Term Memory (LSTM), eight different hyperparameters (go-backward, epoch, batch size, dropout, activation function, optimizer, learning rate and, number of layers) were used to examine to daily and hourly Bitcoin datasets. The effects of each parameter on the daily dataset on the results were evaluated and explained These parameters were examined with hparam properties of Tensorboard. As a result, it was seen that examining all combinations of parameters with hparam produced the best test Mean Square Error (MSE) values with hourly dataset 0.000043633 and daily dataset 0.00073843. Both datasets produced better results with the tanh activation function. Finally, when the results are interpreted, the daily dataset produces better results with a small learning rate and small dropout values, whereas the hourly dataset produces better results with a large learning rate and large dropout values.","PeriodicalId":257636,"journal":{"name":"Sakarya University Journal of Computer and Information Sciences","volume":"432 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSTM Hyperparameters optimization with Hparam parameters for Bitcoin Price Prediction\",\"authors\":\"I. Kervanci, Fatih Akay\",\"doi\":\"10.35377/saucis...1172027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning and deep learning algorithms produce very different results with different examples of their hyperparameters. Algorithm parameters require optimization because they aren't specific for all problems. In this paper Long Short-Term Memory (LSTM), eight different hyperparameters (go-backward, epoch, batch size, dropout, activation function, optimizer, learning rate and, number of layers) were used to examine to daily and hourly Bitcoin datasets. The effects of each parameter on the daily dataset on the results were evaluated and explained These parameters were examined with hparam properties of Tensorboard. As a result, it was seen that examining all combinations of parameters with hparam produced the best test Mean Square Error (MSE) values with hourly dataset 0.000043633 and daily dataset 0.00073843. Both datasets produced better results with the tanh activation function. Finally, when the results are interpreted, the daily dataset produces better results with a small learning rate and small dropout values, whereas the hourly dataset produces better results with a large learning rate and large dropout values.\",\"PeriodicalId\":257636,\"journal\":{\"name\":\"Sakarya University Journal of Computer and Information Sciences\",\"volume\":\"432 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sakarya University Journal of Computer and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.35377/saucis...1172027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sakarya University Journal of Computer and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35377/saucis...1172027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器学习和深度学习算法在不同的超参数示例中产生非常不同的结果。算法参数需要优化,因为它们并不适用于所有问题。在本文长短期记忆(LSTM)中,使用八个不同的超参数(回溯,epoch,批大小,dropout,激活函数,优化器,学习率和层数)来检查每日和每小时的比特币数据集。对每日数据集上的每个参数对结果的影响进行了评估和解释。这些参数使用Tensorboard的hparam属性进行了检查。因此,可以看到,使用hparam检查参数的所有组合产生了最佳的测试均方误差(MSE)值,每小时数据集为0.000043633,每日数据集为0.00073843。使用tanh激活函数,两个数据集都产生了更好的结果。最后,在对结果进行解释时,每天的数据集在较小的学习率和较小的dropout值下产生较好的结果,而每小时的数据集在较大的学习率和较大的dropout值下产生较好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSTM Hyperparameters optimization with Hparam parameters for Bitcoin Price Prediction
Machine learning and deep learning algorithms produce very different results with different examples of their hyperparameters. Algorithm parameters require optimization because they aren't specific for all problems. In this paper Long Short-Term Memory (LSTM), eight different hyperparameters (go-backward, epoch, batch size, dropout, activation function, optimizer, learning rate and, number of layers) were used to examine to daily and hourly Bitcoin datasets. The effects of each parameter on the daily dataset on the results were evaluated and explained These parameters were examined with hparam properties of Tensorboard. As a result, it was seen that examining all combinations of parameters with hparam produced the best test Mean Square Error (MSE) values with hourly dataset 0.000043633 and daily dataset 0.00073843. Both datasets produced better results with the tanh activation function. Finally, when the results are interpreted, the daily dataset produces better results with a small learning rate and small dropout values, whereas the hourly dataset produces better results with a large learning rate and large dropout values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of Cardiovascular Disease Based on Voting Ensemble Model and SHAP Analysis A NOVEL ADDITIVE INTERNET OF THINGS (IoT) FEATURES AND CONVOLUTIONAL NEURAL NETWORK FOR CLASSIFICATION AND SOURCE IDENTIFICATION OF IoT DEVICES High-Capacity Multiplier Design Using Look Up Table Sequential and Correlated Image Hash Code Generation with Deep Reinforcement Learning Price Prediction Using Web Scraping and Machine Learning Algorithms in the Used Car Market
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1