用时间序列横截面数据进行因果推理的反事实估计的实用指南

Licheng Liu, Ye Wang, Yiqing Xu
{"title":"用时间序列横截面数据进行因果推理的反事实估计的实用指南","authors":"Licheng Liu, Ye Wang, Yiqing Xu","doi":"10.2139/ssrn.3555463","DOIUrl":null,"url":null,"abstract":"This paper introduces a unified framework of counterfactual estimation for time-series cross-sectional data, which estimates the average treatment effect on the treated by directly imputing treated counterfactuals. Its special cases include several newly developed methods, such as the fixed effects counterfactual estimator, interactive fixed effects counterfactual estimator, and matrix completion estimator. These estimators provide more reliable causal estimates than conventional two-way fixed effects models when the treatment effects are heterogeneous or unobserved time-varying confounders exist. Under this framework, we propose two sets of diagnostic tests, tests for (no) pre-trend and placebo tests, accompanied by visualization tools, to help researchers gauge the validity of the no-time-varying-confounder assumption. We illustrate these methods with two political economy examples and develop an open-source package, fect, in both R and Stata to facilitate implementation.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":"{\"title\":\"A Practical Guide to Counterfactual Estimators for Causal Inference with Time-Series Cross-Sectional Data\",\"authors\":\"Licheng Liu, Ye Wang, Yiqing Xu\",\"doi\":\"10.2139/ssrn.3555463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a unified framework of counterfactual estimation for time-series cross-sectional data, which estimates the average treatment effect on the treated by directly imputing treated counterfactuals. Its special cases include several newly developed methods, such as the fixed effects counterfactual estimator, interactive fixed effects counterfactual estimator, and matrix completion estimator. These estimators provide more reliable causal estimates than conventional two-way fixed effects models when the treatment effects are heterogeneous or unobserved time-varying confounders exist. Under this framework, we propose two sets of diagnostic tests, tests for (no) pre-trend and placebo tests, accompanied by visualization tools, to help researchers gauge the validity of the no-time-varying-confounder assumption. We illustrate these methods with two political economy examples and develop an open-source package, fect, in both R and Stata to facilitate implementation.\",\"PeriodicalId\":320844,\"journal\":{\"name\":\"PSN: Econometrics\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"93\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PSN: Econometrics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3555463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3555463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

摘要

本文介绍了一个统一的时间序列横截面数据反事实估计框架,该框架通过直接输入处理过的反事实来估计对被处理对象的平均处理效果。它的特殊情况包括几种新发展的方法,如固定效应反事实估计法、交互固定效应反事实估计法和矩阵补全估计法。当治疗效果是异质的或存在未观察到的时变混杂因素时,这些估计器比传统的双向固定效应模型提供更可靠的因果估计。在此框架下,我们提出了两套诊断测试,即(无)趋势前测试和安慰剂测试,并辅以可视化工具,以帮助研究人员衡量无时变混杂因素假设的有效性。我们用两个政治经济学的例子来说明这些方法,并在R和Stata中开发了一个开源包effect,以促进实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Practical Guide to Counterfactual Estimators for Causal Inference with Time-Series Cross-Sectional Data
This paper introduces a unified framework of counterfactual estimation for time-series cross-sectional data, which estimates the average treatment effect on the treated by directly imputing treated counterfactuals. Its special cases include several newly developed methods, such as the fixed effects counterfactual estimator, interactive fixed effects counterfactual estimator, and matrix completion estimator. These estimators provide more reliable causal estimates than conventional two-way fixed effects models when the treatment effects are heterogeneous or unobserved time-varying confounders exist. Under this framework, we propose two sets of diagnostic tests, tests for (no) pre-trend and placebo tests, accompanied by visualization tools, to help researchers gauge the validity of the no-time-varying-confounder assumption. We illustrate these methods with two political economy examples and develop an open-source package, fect, in both R and Stata to facilitate implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust Inference for Moment Condition Models without Rational Expectations Augmented cointegrating linear models with possibly strongly correlated stationary and nonstationary regressors regressors Structured Additive Regression and Tree Boosting Large-Scale Precision Matrix Estimation With SQUIC Error Correction Models and Regressions for Non-Cointegrated Variables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1