光谱分割-增量- pca用于高光谱图像分类

Shabbir Ahmed, Md Abu Marjan, M. Rahman, Md. Shahriar Haque Shemul, Md. Palash Uddin, M. I. Afjal
{"title":"光谱分割-增量- pca用于高光谱图像分类","authors":"Shabbir Ahmed, Md Abu Marjan, M. Rahman, Md. Shahriar Haque Shemul, Md. Palash Uddin, M. I. Afjal","doi":"10.1109/ICCIT57492.2022.10055470","DOIUrl":null,"url":null,"abstract":"Remote sensing through neighboring constrained spectral wavelength bands, the hyperspectral image (HSI) contains significant information about the land objects. Using all of the original HSI features (bands), it appears that the classification performance is inadequate. To attenuate this, band (dimensionality) reduction schemes using feature extraction and feature selection techniques are frequently used in order to enhance classification performance. Despite being often employed for HSI feature reduction, Principal Component Analysis (PCA) usually struggles to retrieve the local desired HSI features since it only evaluates the HSI’s global statistics. Therefore, Spectrally-Segmented-PCA (SSPCA) and Incremental-PCA (IPCA) are presented to supplant the classical PCA. In this paper, we propose the Spectrally-Segmented-Incremental-PCA (SSIPCA) feature extraction approach to make use of the utility of both the SSPCA and the IPCA. Specifically, SSIPCA divides the whole HSI into a number of spectrally separated bands’ subgroups before applying the standard IPCA to each subgroup independently. We experiment with the Indian Pines mixed agricultural HSI classification to assess the proposed SSIPCA employing a perpixel Support Vector Machine (SVM) as the classifier. Based on the classification accuracy, we evince that the proposed SSIPCA approach (90.78% & 88.702%) outperforms the entire original bands of HSI (87.610% & 86.361%), PCA (88.78% & 86.985%), IPCA (89.171% & 86.576%) and SSPCA (90.634% & 88.468%) feature extraction methods.","PeriodicalId":255498,"journal":{"name":"2022 25th International Conference on Computer and Information Technology (ICCIT)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectrally-Segmented-Incremental-PCA for Hyperspectral Image Classification\",\"authors\":\"Shabbir Ahmed, Md Abu Marjan, M. Rahman, Md. Shahriar Haque Shemul, Md. Palash Uddin, M. I. Afjal\",\"doi\":\"10.1109/ICCIT57492.2022.10055470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing through neighboring constrained spectral wavelength bands, the hyperspectral image (HSI) contains significant information about the land objects. Using all of the original HSI features (bands), it appears that the classification performance is inadequate. To attenuate this, band (dimensionality) reduction schemes using feature extraction and feature selection techniques are frequently used in order to enhance classification performance. Despite being often employed for HSI feature reduction, Principal Component Analysis (PCA) usually struggles to retrieve the local desired HSI features since it only evaluates the HSI’s global statistics. Therefore, Spectrally-Segmented-PCA (SSPCA) and Incremental-PCA (IPCA) are presented to supplant the classical PCA. In this paper, we propose the Spectrally-Segmented-Incremental-PCA (SSIPCA) feature extraction approach to make use of the utility of both the SSPCA and the IPCA. Specifically, SSIPCA divides the whole HSI into a number of spectrally separated bands’ subgroups before applying the standard IPCA to each subgroup independently. We experiment with the Indian Pines mixed agricultural HSI classification to assess the proposed SSIPCA employing a perpixel Support Vector Machine (SVM) as the classifier. Based on the classification accuracy, we evince that the proposed SSIPCA approach (90.78% & 88.702%) outperforms the entire original bands of HSI (87.610% & 86.361%), PCA (88.78% & 86.985%), IPCA (89.171% & 86.576%) and SSPCA (90.634% & 88.468%) feature extraction methods.\",\"PeriodicalId\":255498,\"journal\":{\"name\":\"2022 25th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 25th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIT57492.2022.10055470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIT57492.2022.10055470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高光谱图像(HSI)通过相邻的受限光谱波段进行遥感,包含了地物的重要信息。使用所有原始的恒指特征(波段),分类性能似乎是不足的。为了减轻这种影响,经常使用使用特征提取和特征选择技术的频带(维数)降维方案来提高分类性能。尽管经常用于HSI特征缩减,但主成分分析(PCA)通常难以检索局部所需的HSI特征,因为它只评估HSI的全局统计。为此,提出了光谱分割主成分分析(SSPCA)和增量主成分分析(IPCA)来取代传统的主成分分析。在本文中,我们提出了频谱分割增量pca (SSIPCA)特征提取方法,以利用SSPCA和IPCA的效用。具体而言,SSIPCA将整个恒生指数划分为多个频谱分离的波段子群,然后将标准IPCA独立应用于每个子群。我们以印度松木混合农业HSI分类为实验对象,采用超像素支持向量机(SVM)作为分类器来评估所提出的SSIPCA。基于分类精度,我们证明了所提出的SSIPCA方法(90.78%和88.702%)优于HSI(87.610%和86.361%)、PCA(88.78%和86.985%)、IPCA(89.171%和86.576%)和SSPCA(90.634%和88.468%)的整个原始波段的特征提取方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spectrally-Segmented-Incremental-PCA for Hyperspectral Image Classification
Remote sensing through neighboring constrained spectral wavelength bands, the hyperspectral image (HSI) contains significant information about the land objects. Using all of the original HSI features (bands), it appears that the classification performance is inadequate. To attenuate this, band (dimensionality) reduction schemes using feature extraction and feature selection techniques are frequently used in order to enhance classification performance. Despite being often employed for HSI feature reduction, Principal Component Analysis (PCA) usually struggles to retrieve the local desired HSI features since it only evaluates the HSI’s global statistics. Therefore, Spectrally-Segmented-PCA (SSPCA) and Incremental-PCA (IPCA) are presented to supplant the classical PCA. In this paper, we propose the Spectrally-Segmented-Incremental-PCA (SSIPCA) feature extraction approach to make use of the utility of both the SSPCA and the IPCA. Specifically, SSIPCA divides the whole HSI into a number of spectrally separated bands’ subgroups before applying the standard IPCA to each subgroup independently. We experiment with the Indian Pines mixed agricultural HSI classification to assess the proposed SSIPCA employing a perpixel Support Vector Machine (SVM) as the classifier. Based on the classification accuracy, we evince that the proposed SSIPCA approach (90.78% & 88.702%) outperforms the entire original bands of HSI (87.610% & 86.361%), PCA (88.78% & 86.985%), IPCA (89.171% & 86.576%) and SSPCA (90.634% & 88.468%) feature extraction methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SlotFinder: A Spatio-temporal based Car Parking System Land Cover and Land Use Detection using Semi-Supervised Learning Comparative Analysis of Process Scheduling Algorithm using AI models Throughput Optimization of IEEE 802.15.4e TSCH-Based Scheduling: A Deep Neural Network (DNN) Scheme Towards Developing a Voice-Over-Guided System for Visually Impaired People to Learn Writing the Alphabets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1