N-Tube:路径感知互联网架构中正式验证的安全带宽预留

Thilo Weghorn, Si Liu, C. Sprenger, A. Perrig, D. Basin
{"title":"N-Tube:路径感知互联网架构中正式验证的安全带宽预留","authors":"Thilo Weghorn, Si Liu, C. Sprenger, A. Perrig, D. Basin","doi":"10.1109/CSF54842.2022.9919646","DOIUrl":null,"url":null,"abstract":"We present N-Tube, a novel, provably secure, inter-domain bandwidth reservation algorithm that runs on a network architecture supporting path-based forwarding. N-Tube reserves global end-to-end bandwidth along network paths in a distributed, neighbor-based, and tube-fair way. It guarantees that benign bandwidth demands are granted available allocations that are immutable, stable, lower-bounded, andfair, even during adversarial demand bursts. We formalize N-Tube and powerful adversaries as a labeled transition system, and inductively prove its safety and security properties. We also apply statistical model checking to validate our proofs and perform an additional quantitative assessment of N-Tube, providing strong guarantees for protection against DDoS attacks. We are not aware of any other complex networked system designs that have been subjected to a comparable analysis of both their qualitative properties (such as correctness and security) and their quantitative properties (such as performance).","PeriodicalId":412553,"journal":{"name":"2022 IEEE 35th Computer Security Foundations Symposium (CSF)","volume":"207 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"N-Tube: Formally Verified Secure Bandwidth Reservation in Path-Aware Internet Architectures\",\"authors\":\"Thilo Weghorn, Si Liu, C. Sprenger, A. Perrig, D. Basin\",\"doi\":\"10.1109/CSF54842.2022.9919646\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present N-Tube, a novel, provably secure, inter-domain bandwidth reservation algorithm that runs on a network architecture supporting path-based forwarding. N-Tube reserves global end-to-end bandwidth along network paths in a distributed, neighbor-based, and tube-fair way. It guarantees that benign bandwidth demands are granted available allocations that are immutable, stable, lower-bounded, andfair, even during adversarial demand bursts. We formalize N-Tube and powerful adversaries as a labeled transition system, and inductively prove its safety and security properties. We also apply statistical model checking to validate our proofs and perform an additional quantitative assessment of N-Tube, providing strong guarantees for protection against DDoS attacks. We are not aware of any other complex networked system designs that have been subjected to a comparable analysis of both their qualitative properties (such as correctness and security) and their quantitative properties (such as performance).\",\"PeriodicalId\":412553,\"journal\":{\"name\":\"2022 IEEE 35th Computer Security Foundations Symposium (CSF)\",\"volume\":\"207 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 35th Computer Security Foundations Symposium (CSF)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSF54842.2022.9919646\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th Computer Security Foundations Symposium (CSF)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSF54842.2022.9919646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了N-Tube,一种新颖的,可证明安全的,域间带宽保留算法,它运行在支持基于路径转发的网络架构上。N-Tube以分布式、基于邻居和管道公平的方式沿网络路径保留全局端到端带宽。它保证良性带宽需求被授予不可变、稳定、下限和公平的可用分配,即使在对抗需求爆发期间也是如此。我们将N-Tube和强大的对手形式化为一个标记的过渡系统,并归纳证明了它的安全性和安全性。我们还应用统计模型检查来验证我们的证明,并对N-Tube进行额外的定量评估,为抵御DDoS攻击提供强有力的保证。我们不知道有任何其他复杂的网络系统设计已经对其定性属性(如正确性和安全性)和定量属性(如性能)进行了可比的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N-Tube: Formally Verified Secure Bandwidth Reservation in Path-Aware Internet Architectures
We present N-Tube, a novel, provably secure, inter-domain bandwidth reservation algorithm that runs on a network architecture supporting path-based forwarding. N-Tube reserves global end-to-end bandwidth along network paths in a distributed, neighbor-based, and tube-fair way. It guarantees that benign bandwidth demands are granted available allocations that are immutable, stable, lower-bounded, andfair, even during adversarial demand bursts. We formalize N-Tube and powerful adversaries as a labeled transition system, and inductively prove its safety and security properties. We also apply statistical model checking to validate our proofs and perform an additional quantitative assessment of N-Tube, providing strong guarantees for protection against DDoS attacks. We are not aware of any other complex networked system designs that have been subjected to a comparable analysis of both their qualitative properties (such as correctness and security) and their quantitative properties (such as performance).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cracking the Stateful Nut: Computational Proofs of Stateful Security Protocols using the Squirrel Proof Assistant N-Tube: Formally Verified Secure Bandwidth Reservation in Path-Aware Internet Architectures How Efficient are Replay Attacks against Vote Privacy? A Formal Quantitative Analysis Conditional Observational Equivalence and Off-line Guessing Attacks in Multiset Rewriting Machine-Checked Proofs of Privacy Against Malicious Boards for Selene & Co
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1