一种改进型高升力低雷诺数翼型的空气动力学:初步分析

A. Hamid, Firdaus Mohamad, M. Noh, R. E. Nasir, M. A. M. Sapardi
{"title":"一种改进型高升力低雷诺数翼型的空气动力学:初步分析","authors":"A. Hamid, Firdaus Mohamad, M. Noh, R. E. Nasir, M. A. M. Sapardi","doi":"10.46338/ijetae1222_02","DOIUrl":null,"url":null,"abstract":"Airfoil selection is a crucial phase in the design of a small unmanned fixed-wing aircraft to allow a minimum size and weight of the lifting surfaces. The present study analyzesairfoils to be used in low operating Reynolds number unmanned aerial vehicles (UAV) using XFLR5 software, which was validated against wind tunnel data. Three baseline airfoils were investigated, namely NACA4412, Miley M06-13- 128 and Selig S1223. The best performing airfoils are then modified using the inverse airfoil design method to improve their performance in cruising flight. The modified airfoil resulted in larger leading edge radius and slightly thicker chord of the airfoil compared to the baseline airfoil. In general, the modified airfoil showed an improvement in stall characteristic, lift and drag coefficients in the post-stall regime, and a lower magnitude of moment coefficient for almost all investigated angles of attack compared to the baseline airfoil.","PeriodicalId":169403,"journal":{"name":"International Journal of Emerging Technology and Advanced Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerodynamics of a Modified High-Lift Low Reynolds Number Airfoil: Preliminary Analysis\",\"authors\":\"A. Hamid, Firdaus Mohamad, M. Noh, R. E. Nasir, M. A. M. Sapardi\",\"doi\":\"10.46338/ijetae1222_02\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airfoil selection is a crucial phase in the design of a small unmanned fixed-wing aircraft to allow a minimum size and weight of the lifting surfaces. The present study analyzesairfoils to be used in low operating Reynolds number unmanned aerial vehicles (UAV) using XFLR5 software, which was validated against wind tunnel data. Three baseline airfoils were investigated, namely NACA4412, Miley M06-13- 128 and Selig S1223. The best performing airfoils are then modified using the inverse airfoil design method to improve their performance in cruising flight. The modified airfoil resulted in larger leading edge radius and slightly thicker chord of the airfoil compared to the baseline airfoil. In general, the modified airfoil showed an improvement in stall characteristic, lift and drag coefficients in the post-stall regime, and a lower magnitude of moment coefficient for almost all investigated angles of attack compared to the baseline airfoil.\",\"PeriodicalId\":169403,\"journal\":{\"name\":\"International Journal of Emerging Technology and Advanced Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Emerging Technology and Advanced Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46338/ijetae1222_02\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Emerging Technology and Advanced Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46338/ijetae1222_02","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在小型无人固定翼飞机的设计中,翼型的选择是一个至关重要的阶段,以允许最小尺寸和重量的升力面。本研究利用XFLR5软件对低雷诺数无人机的翼型进行了分析,并对风洞数据进行了验证。研究了三个基线翼型,即NACA4412, Miley M06-13- 128和Selig S1223。然后使用反翼型设计方法对性能最好的翼型进行修改,以提高其巡航飞行性能。修改翼型导致较大的前缘半径和稍厚的弦翼型相比,基线翼型。在一般情况下,修改翼型显示在失速特性的改善,升力和阻力系数在失速后的制度,和一个较低的矩系数几乎所有调查的攻角相比,基线翼型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerodynamics of a Modified High-Lift Low Reynolds Number Airfoil: Preliminary Analysis
Airfoil selection is a crucial phase in the design of a small unmanned fixed-wing aircraft to allow a minimum size and weight of the lifting surfaces. The present study analyzesairfoils to be used in low operating Reynolds number unmanned aerial vehicles (UAV) using XFLR5 software, which was validated against wind tunnel data. Three baseline airfoils were investigated, namely NACA4412, Miley M06-13- 128 and Selig S1223. The best performing airfoils are then modified using the inverse airfoil design method to improve their performance in cruising flight. The modified airfoil resulted in larger leading edge radius and slightly thicker chord of the airfoil compared to the baseline airfoil. In general, the modified airfoil showed an improvement in stall characteristic, lift and drag coefficients in the post-stall regime, and a lower magnitude of moment coefficient for almost all investigated angles of attack compared to the baseline airfoil.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of Climate Change on Fish Species Classification Using Machine Learning and Deep Learning Algorithms Bibliometric Analysis of the Influence of Artificial Intelligence on the Development of Education Wireless IoT Networks Security and Lightweight Encryption Schemes- Survey Challenges of Requirements Engineering in Agile Projects: A Systematic Review From Data to Design: An IoT-Based Novel Solution for Combating Distracted Driving and Speeding Events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1