嵌入式机器人的高效fpga加速激光雷达SLAM

M. Flottmann, Marc Eisoldt, Julian Gaal, Marc Rothmann, M. Tassemeier, T. Wiemann, Mario Porrmann
{"title":"嵌入式机器人的高效fpga加速激光雷达SLAM","authors":"M. Flottmann, Marc Eisoldt, Julian Gaal, Marc Rothmann, M. Tassemeier, T. Wiemann, Mario Porrmann","doi":"10.1109/ICFPT52863.2021.9609934","DOIUrl":null,"url":null,"abstract":"Being one of the fundamental problems in autonomous robotics, SLAM (Simultaneous Localization and Mapping) algorithms have gained a lot of attention. Although numerous approaches have been presented for determining 6D poses in 3D environments, one of the main challenges that remains is the required combination of real-time processing and high energy efficiency. In this paper, a combination of CPU and FPGA processing is used to tackle this problem, utilizing a reconfigurable SoC. We present a complete solution for embedded LiDAR-based SLAM that uses a global Truncated Signed Distance Function (TSDF) as map representation. A hardware-in-the-loop environment with ROS integration enables efficient evaluation of new variants of algorithms and implementations. Based on benchmark data sets and real-world environments, we show that our approach compares well to established SLAM algorithms. Compared to a software implementation on a state-of-the-art PC, the proposed implementation achieves a 7-fold speed-up and requires 18 times less energy when using a Xilinx UltraScale+ XCZU15EG.","PeriodicalId":376220,"journal":{"name":"2021 International Conference on Field-Programmable Technology (ICFPT)","volume":"232 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Energy-efficient FPGA-accelerated LiDAR-based SLAM for embedded robotics\",\"authors\":\"M. Flottmann, Marc Eisoldt, Julian Gaal, Marc Rothmann, M. Tassemeier, T. Wiemann, Mario Porrmann\",\"doi\":\"10.1109/ICFPT52863.2021.9609934\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Being one of the fundamental problems in autonomous robotics, SLAM (Simultaneous Localization and Mapping) algorithms have gained a lot of attention. Although numerous approaches have been presented for determining 6D poses in 3D environments, one of the main challenges that remains is the required combination of real-time processing and high energy efficiency. In this paper, a combination of CPU and FPGA processing is used to tackle this problem, utilizing a reconfigurable SoC. We present a complete solution for embedded LiDAR-based SLAM that uses a global Truncated Signed Distance Function (TSDF) as map representation. A hardware-in-the-loop environment with ROS integration enables efficient evaluation of new variants of algorithms and implementations. Based on benchmark data sets and real-world environments, we show that our approach compares well to established SLAM algorithms. Compared to a software implementation on a state-of-the-art PC, the proposed implementation achieves a 7-fold speed-up and requires 18 times less energy when using a Xilinx UltraScale+ XCZU15EG.\",\"PeriodicalId\":376220,\"journal\":{\"name\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"volume\":\"232 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Field-Programmable Technology (ICFPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFPT52863.2021.9609934\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Field-Programmable Technology (ICFPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFPT52863.2021.9609934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

SLAM (Simultaneous Localization and Mapping)算法作为自主机器人的基础问题之一,受到了广泛的关注。尽管已经提出了许多方法来确定3D环境中的6D姿势,但仍然存在的主要挑战之一是需要将实时处理和高能效结合起来。在本文中,使用CPU和FPGA处理的组合来解决这个问题,利用可重构的SoC。我们提出了一个基于嵌入式激光雷达的SLAM的完整解决方案,该解决方案使用全局截断签名距离函数(TSDF)作为地图表示。具有ROS集成的硬件在环环境可以有效地评估算法和实现的新变体。基于基准数据集和现实世界环境,我们证明了我们的方法与已建立的SLAM算法相比较。与最先进的PC上的软件实现相比,当使用赛灵思UltraScale+ XCZU15EG时,拟议的实现实现了7倍的加速,所需的能量减少了18倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy-efficient FPGA-accelerated LiDAR-based SLAM for embedded robotics
Being one of the fundamental problems in autonomous robotics, SLAM (Simultaneous Localization and Mapping) algorithms have gained a lot of attention. Although numerous approaches have been presented for determining 6D poses in 3D environments, one of the main challenges that remains is the required combination of real-time processing and high energy efficiency. In this paper, a combination of CPU and FPGA processing is used to tackle this problem, utilizing a reconfigurable SoC. We present a complete solution for embedded LiDAR-based SLAM that uses a global Truncated Signed Distance Function (TSDF) as map representation. A hardware-in-the-loop environment with ROS integration enables efficient evaluation of new variants of algorithms and implementations. Based on benchmark data sets and real-world environments, we show that our approach compares well to established SLAM algorithms. Compared to a software implementation on a state-of-the-art PC, the proposed implementation achieves a 7-fold speed-up and requires 18 times less energy when using a Xilinx UltraScale+ XCZU15EG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of IOBUF-based Ring Oscillators StreamZip: Compressed Sliding-Windows for Stream Aggregation Tens of gigabytes per second JSON-to-Arrow conversion with FPGA accelerators A High-Performance and Flexible FPGA Inference Accelerator for Decision Forests Based on Prior Feature Space Partitioning SoC FPGA implementation of an unmanned mobile vehicle with an image transmission system over VNC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1