分布式发电机组优化集成的多目标规划框架

Keshav Pokharel, M. Mokhtar, J. Howe
{"title":"分布式发电机组优化集成的多目标规划框架","authors":"Keshav Pokharel, M. Mokhtar, J. Howe","doi":"10.1109/ISGTEurope.2012.6465627","DOIUrl":null,"url":null,"abstract":"This paper presents an evolutionary algorithm for analyzing the best mix of distributed generations (DG) in a distribution network. The multi-objective optimization aims at minimizing the total cost of real power generation, line losses and CO2 emissions, and maximizing the benefits from the DG over a 20 years planning horizon. The method assesses the fault current constraint imposed on the distribution network by the existing and new DG in order not to violate the short circuit capacity of existing switchgear. The analysis utilizes one of the highly regarded evolutionary algorithm, the Strength Pareto Evolutionary Algorithm 2 (SPEA2) for multi-objective optimization and MATPOWER for solving the optimal power flow problems.","PeriodicalId":244881,"journal":{"name":"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A multi-objective planning framework for optimal integration of distributed generations\",\"authors\":\"Keshav Pokharel, M. Mokhtar, J. Howe\",\"doi\":\"10.1109/ISGTEurope.2012.6465627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents an evolutionary algorithm for analyzing the best mix of distributed generations (DG) in a distribution network. The multi-objective optimization aims at minimizing the total cost of real power generation, line losses and CO2 emissions, and maximizing the benefits from the DG over a 20 years planning horizon. The method assesses the fault current constraint imposed on the distribution network by the existing and new DG in order not to violate the short circuit capacity of existing switchgear. The analysis utilizes one of the highly regarded evolutionary algorithm, the Strength Pareto Evolutionary Algorithm 2 (SPEA2) for multi-objective optimization and MATPOWER for solving the optimal power flow problems.\",\"PeriodicalId\":244881,\"journal\":{\"name\":\"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGTEurope.2012.6465627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGTEurope.2012.6465627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

本文提出了一种分析配电网中分布式代(DG)最佳组合的进化算法。多目标优化旨在使实际发电总成本、线路损耗和二氧化碳排放最小化,并在20年的规划期内最大限度地提高DG的效益。该方法在不违反现有开关柜短路容量的前提下,评估现有和新DG对配电网的故障电流约束。该分析使用了一种备受推崇的进化算法,即用于多目标优化的强度帕累托进化算法2 (SPEA2)和用于求解最优潮流问题的MATPOWER。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A multi-objective planning framework for optimal integration of distributed generations
This paper presents an evolutionary algorithm for analyzing the best mix of distributed generations (DG) in a distribution network. The multi-objective optimization aims at minimizing the total cost of real power generation, line losses and CO2 emissions, and maximizing the benefits from the DG over a 20 years planning horizon. The method assesses the fault current constraint imposed on the distribution network by the existing and new DG in order not to violate the short circuit capacity of existing switchgear. The analysis utilizes one of the highly regarded evolutionary algorithm, the Strength Pareto Evolutionary Algorithm 2 (SPEA2) for multi-objective optimization and MATPOWER for solving the optimal power flow problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A local energy management system for solar integration and improved security of supply: The Nice Grid project Centralized voltage control method using plural D-STATCOM with controllable dead band in distribution system with renewable energy A national project on Optimal Control and demonstration of the Japanese smart grid for massive integration of photovoltaic systems Controlling smart grid adaptivity Integration of heat pumps in distribution grids: Economic motivation for grid control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1