基于分层支持向量聚类的无监督变化检测

F. de Morsier, D. Tuia, V. Gass, J. Thiran, M. Borgeaud
{"title":"基于分层支持向量聚类的无监督变化检测","authors":"F. de Morsier, D. Tuia, V. Gass, J. Thiran, M. Borgeaud","doi":"10.1109/PPRS.2012.6398309","DOIUrl":null,"url":null,"abstract":"When dealing with change detection problems, information about the nature of the changes is often unavailable. In this paper we propose a solution to perform unsupervised change detection based on nonlinear support vector clustering. We build a series of nested hierarchical support vector clustering descriptions, select the appropriate one using a cluster validity measure and finally merge the clusters into two classes, corresponding to changed and unchanged areas. Experiments on two multispectral datasets confirm the power and appropriateness of the proposed system.","PeriodicalId":139043,"journal":{"name":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Unsupervised change detection via hierarchical support vector clustering\",\"authors\":\"F. de Morsier, D. Tuia, V. Gass, J. Thiran, M. Borgeaud\",\"doi\":\"10.1109/PPRS.2012.6398309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When dealing with change detection problems, information about the nature of the changes is often unavailable. In this paper we propose a solution to perform unsupervised change detection based on nonlinear support vector clustering. We build a series of nested hierarchical support vector clustering descriptions, select the appropriate one using a cluster validity measure and finally merge the clusters into two classes, corresponding to changed and unchanged areas. Experiments on two multispectral datasets confirm the power and appropriateness of the proposed system.\",\"PeriodicalId\":139043,\"journal\":{\"name\":\"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-12-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPRS.2012.6398309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPRS.2012.6398309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在处理变更检测问题时,关于变更性质的信息通常是不可用的。本文提出了一种基于非线性支持向量聚类的无监督变化检测方法。我们建立了一系列嵌套的分层支持向量聚类描述,使用聚类有效性度量选择合适的聚类描述,最后将聚类合并为两类,分别对应变化和不变的区域。在两个多光谱数据集上的实验验证了该系统的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unsupervised change detection via hierarchical support vector clustering
When dealing with change detection problems, information about the nature of the changes is often unavailable. In this paper we propose a solution to perform unsupervised change detection based on nonlinear support vector clustering. We build a series of nested hierarchical support vector clustering descriptions, select the appropriate one using a cluster validity measure and finally merge the clusters into two classes, corresponding to changed and unchanged areas. Experiments on two multispectral datasets confirm the power and appropriateness of the proposed system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D classification of crossroads from multiple aerial images using conditional random fields Unsupervised change detection via hierarchical support vector clustering Study for the periodicity of volcanic activity using satellite data A two-dimensional production system for grouping persistent scatterers in urban high-resolution SAR scenes Remote sensing segmentation benchmark
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1