新冠肺炎疫情数据可视化研究

Xiaoquan Ou, Zuying Zhu, Junyan Chen, W. Xiao
{"title":"新冠肺炎疫情数据可视化研究","authors":"Xiaoquan Ou, Zuying Zhu, Junyan Chen, W. Xiao","doi":"10.1109/ECICE50847.2020.9301964","DOIUrl":null,"url":null,"abstract":"The development of science and technology and the innovation of network technology enable big data technology. In the pandemic of coronary pneumonia in 2020, complex and large scale epidemic data, data analysis, and processing play an important role. Data visualization shows the advantages of rapid processing and intuitive display of data analysis, which helps people accurately and objectively predict the direction of the epidemic. This paper aims to create display pages on the front end of the epidemic data website with HTML, CSS, and JavaScript. The Flask framework of python is used to build a server to process the data on the back end. At the same time, ECharts is used to visualize and analyze the data, which finally displays the status and trend of the epidemic in each region in real-time.","PeriodicalId":130143,"journal":{"name":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","volume":"383 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Study of Data Visualization of the Neo-coronary Pneumonia Epidemic\",\"authors\":\"Xiaoquan Ou, Zuying Zhu, Junyan Chen, W. Xiao\",\"doi\":\"10.1109/ECICE50847.2020.9301964\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of science and technology and the innovation of network technology enable big data technology. In the pandemic of coronary pneumonia in 2020, complex and large scale epidemic data, data analysis, and processing play an important role. Data visualization shows the advantages of rapid processing and intuitive display of data analysis, which helps people accurately and objectively predict the direction of the epidemic. This paper aims to create display pages on the front end of the epidemic data website with HTML, CSS, and JavaScript. The Flask framework of python is used to build a server to process the data on the back end. At the same time, ECharts is used to visualize and analyze the data, which finally displays the status and trend of the epidemic in each region in real-time.\",\"PeriodicalId\":130143,\"journal\":{\"name\":\"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"volume\":\"383 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECICE50847.2020.9301964\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECICE50847.2020.9301964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

科技的发展和网络技术的创新使大数据技术成为可能。在2020年冠状病毒肺炎大流行中,复杂、大规模的疫情数据、数据分析和处理发挥着重要作用。数据可视化显示了数据分析快速处理和直观显示的优势,有助于人们准确、客观地预测疫情走向。本文旨在利用HTML、CSS和JavaScript在疫情数据网站前端创建显示页面。python的Flask框架用于构建服务器来处理后端数据。同时利用ECharts对数据进行可视化分析,最终实时显示各地区疫情的现状和趋势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Study of Data Visualization of the Neo-coronary Pneumonia Epidemic
The development of science and technology and the innovation of network technology enable big data technology. In the pandemic of coronary pneumonia in 2020, complex and large scale epidemic data, data analysis, and processing play an important role. Data visualization shows the advantages of rapid processing and intuitive display of data analysis, which helps people accurately and objectively predict the direction of the epidemic. This paper aims to create display pages on the front end of the epidemic data website with HTML, CSS, and JavaScript. The Flask framework of python is used to build a server to process the data on the back end. At the same time, ECharts is used to visualize and analyze the data, which finally displays the status and trend of the epidemic in each region in real-time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
3D Cameras and Algorithms for Multi-Angle Gripping and Control of Robotic Arm Real-Time Interaction System of Human-Robot with Hand Gestures A Smart Simulation System for Manufacturing Common Management Technology of Automation Equipment in Industry 4.0 Factors Affecting Location of Nasal Airway Obstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1