基于遗传算法改进神经网络的纳米纤维静电纺丝控制参数同步效应定量研究

Shayan Seyedin, S. Maghsoodloo, V. Mottaghitalab
{"title":"基于遗传算法改进神经网络的纳米纤维静电纺丝控制参数同步效应定量研究","authors":"Shayan Seyedin, S. Maghsoodloo, V. Mottaghitalab","doi":"10.4018/IJCCE.2017010102","DOIUrl":null,"url":null,"abstract":"Inthisarticle,modifiedneuralnetworksusinggeneticalgorithmswereemployedtoinvestigatethe simultaneouseffectsoffourofthemostimportantparameters,namely;solutionconcentration(C); spinningdistance(d);appliedvoltage(V);andvolumeflowrate(Q)onmeanfiberdiameter(MFD), as well as standard deviation of fiber diameter (StdFD) in electrospinning of polyvinyl alcohol (PVA)nanofibers.Geneticalgorithmoptimizedneuralnetworks(GANN)wereusedformodeling theelectrospinningprocess.Theresultsindicatebetterexperimentalconditionsandmorepredictive abilityofGANNs.Therefore,theapproachofusinggeneticalgorithmstooptimizeneuralnetworksfor modelingtheelectrospinningprocesshasbeensuccessful.RSMcouldbeemployedwhenstatistical analysis,quantitativestudyoftheeffectsoftheparametersandvisualizationoftheresponsesurfaces areofinterest,whereasinthecaseofmodelingtheprocessandpredictingnewconditions,GANN isamorepowerfultoolandpresentsmoredesirableresults. KEywoRdS Electrospinning, Empirical Modeling, Genetic Algorithm Optimized Neural Networks (GANN), Response Surface Methodology","PeriodicalId":132974,"journal":{"name":"Int. J. Chemoinformatics Chem. Eng.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Quantitative Study on Simultaneous Effects of Governing Parameters in Electrospinning of Nanofibers using Modified Neural Network using Genetic Algorithm\",\"authors\":\"Shayan Seyedin, S. Maghsoodloo, V. Mottaghitalab\",\"doi\":\"10.4018/IJCCE.2017010102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inthisarticle,modifiedneuralnetworksusinggeneticalgorithmswereemployedtoinvestigatethe simultaneouseffectsoffourofthemostimportantparameters,namely;solutionconcentration(C); spinningdistance(d);appliedvoltage(V);andvolumeflowrate(Q)onmeanfiberdiameter(MFD), as well as standard deviation of fiber diameter (StdFD) in electrospinning of polyvinyl alcohol (PVA)nanofibers.Geneticalgorithmoptimizedneuralnetworks(GANN)wereusedformodeling theelectrospinningprocess.Theresultsindicatebetterexperimentalconditionsandmorepredictive abilityofGANNs.Therefore,theapproachofusinggeneticalgorithmstooptimizeneuralnetworksfor modelingtheelectrospinningprocesshasbeensuccessful.RSMcouldbeemployedwhenstatistical analysis,quantitativestudyoftheeffectsoftheparametersandvisualizationoftheresponsesurfaces areofinterest,whereasinthecaseofmodelingtheprocessandpredictingnewconditions,GANN isamorepowerfultoolandpresentsmoredesirableresults. KEywoRdS Electrospinning, Empirical Modeling, Genetic Algorithm Optimized Neural Networks (GANN), Response Surface Methodology\",\"PeriodicalId\":132974,\"journal\":{\"name\":\"Int. J. Chemoinformatics Chem. Eng.\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Chemoinformatics Chem. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJCCE.2017010102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Chemoinformatics Chem. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJCCE.2017010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Inthisarticle,modifiedneuralnetworksusinggeneticalgorithmswereemployedtoinvestigatethe simultaneouseffectsoffourofthemostimportantparameters,namely;solutionconcentration(C); spinningdistance(d);appliedvoltage(V);andvolumeflowrate(Q)onmeanfiberdiameter(MFD),以及聚乙烯醇电纺丝中纤维直径(StdFD)的标准偏差(PVA)nanofibers.Geneticalgorithmoptimizedneuralnetworks(GANN)wereusedformodeling theelectrospinningprocess。Theresultsindicatebetterexperimentalconditionsandmorepredictive abilityofGANNs。Therefore,theapproachofusinggeneticalgorithmstooptimizeneuralnetworksfor modelingtheelectrospinningprocesshasbeensuccessful。RSMcouldbeemployedwhenstatistical分析,quantitativestudyoftheeffectsoftheparametersandvisualizationoftheresponsesurfaces areofinterest,whereasinthecaseofmodelingtheprocessandpredictingnewconditions,GANN isamorepowerfultoolandpresentsmoredesirableresults。关键词静电纺丝,经验建模,遗传算法优化神经网络,响应面方法
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Quantitative Study on Simultaneous Effects of Governing Parameters in Electrospinning of Nanofibers using Modified Neural Network using Genetic Algorithm
Inthisarticle,modifiedneuralnetworksusinggeneticalgorithmswereemployedtoinvestigatethe simultaneouseffectsoffourofthemostimportantparameters,namely;solutionconcentration(C); spinningdistance(d);appliedvoltage(V);andvolumeflowrate(Q)onmeanfiberdiameter(MFD), as well as standard deviation of fiber diameter (StdFD) in electrospinning of polyvinyl alcohol (PVA)nanofibers.Geneticalgorithmoptimizedneuralnetworks(GANN)wereusedformodeling theelectrospinningprocess.Theresultsindicatebetterexperimentalconditionsandmorepredictive abilityofGANNs.Therefore,theapproachofusinggeneticalgorithmstooptimizeneuralnetworksfor modelingtheelectrospinningprocesshasbeensuccessful.RSMcouldbeemployedwhenstatistical analysis,quantitativestudyoftheeffectsoftheparametersandvisualizationoftheresponsesurfaces areofinterest,whereasinthecaseofmodelingtheprocessandpredictingnewconditions,GANN isamorepowerfultoolandpresentsmoredesirableresults. KEywoRdS Electrospinning, Empirical Modeling, Genetic Algorithm Optimized Neural Networks (GANN), Response Surface Methodology
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Preparation and Characterization of Chitosan - Double Walled Carbon Nanotubes Hydrogels Fukui Indices as QSAR Model Descriptors: The Case of the Anti-HIV Activity of 1-2-[(Hydroxyethoxy) Methyl]-6-(Phenylthio) Thymine Derivatives Rice Straw Extracted Cellulose Biocompatible Nanofiber Various Rate Law Orders Through Hydrolysis of Sodium Borohydride Over Co-M-Zr-B (M= Cr, Mo and W) Nano Catalyst The Structure, Topological, and Functional Dimension of Biomolecules
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1