{"title":"基于自旋转移转矩MRAM存储器的零误码率弱PUF","authors":"E. Vatajelu, G. D. Natale, P. Prinetto","doi":"10.1109/IVSW.2017.8031552","DOIUrl":null,"url":null,"abstract":"Physically Unclonable Functions (PUFs) are emerging cryptographic primitives used to implement low-cost device authentication and secure secret key generation. While several solutions exist for classical CMOS devices, novel proposals have been recently presented which exploit emerging technologies like magnetic memories. The Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) is a promising choice for future PUFs due to the high variability affecting the electrical resistance of the Magnetic Tunnel Junction (MTJ) device in anti-parallel magnetization. Some papers showed that these devices could guarantee high levels of both unclonability and reliability. However, 100% reliability is not yet obtained in those proposals. In this paper we present an effective method to identify the unreliable cells in a PUF implementation. This information is then used to create a zero bit-error-rate PUF scheme.","PeriodicalId":184196,"journal":{"name":"2017 IEEE 2nd International Verification and Security Workshop (IVSW)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Zero bit-error-rate weak PUF based on Spin-Transfer-Torque MRAM memories\",\"authors\":\"E. Vatajelu, G. D. Natale, P. Prinetto\",\"doi\":\"10.1109/IVSW.2017.8031552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physically Unclonable Functions (PUFs) are emerging cryptographic primitives used to implement low-cost device authentication and secure secret key generation. While several solutions exist for classical CMOS devices, novel proposals have been recently presented which exploit emerging technologies like magnetic memories. The Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) is a promising choice for future PUFs due to the high variability affecting the electrical resistance of the Magnetic Tunnel Junction (MTJ) device in anti-parallel magnetization. Some papers showed that these devices could guarantee high levels of both unclonability and reliability. However, 100% reliability is not yet obtained in those proposals. In this paper we present an effective method to identify the unreliable cells in a PUF implementation. This information is then used to create a zero bit-error-rate PUF scheme.\",\"PeriodicalId\":184196,\"journal\":{\"name\":\"2017 IEEE 2nd International Verification and Security Workshop (IVSW)\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 2nd International Verification and Security Workshop (IVSW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVSW.2017.8031552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 2nd International Verification and Security Workshop (IVSW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVSW.2017.8031552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zero bit-error-rate weak PUF based on Spin-Transfer-Torque MRAM memories
Physically Unclonable Functions (PUFs) are emerging cryptographic primitives used to implement low-cost device authentication and secure secret key generation. While several solutions exist for classical CMOS devices, novel proposals have been recently presented which exploit emerging technologies like magnetic memories. The Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) is a promising choice for future PUFs due to the high variability affecting the electrical resistance of the Magnetic Tunnel Junction (MTJ) device in anti-parallel magnetization. Some papers showed that these devices could guarantee high levels of both unclonability and reliability. However, 100% reliability is not yet obtained in those proposals. In this paper we present an effective method to identify the unreliable cells in a PUF implementation. This information is then used to create a zero bit-error-rate PUF scheme.