Jonathan Monsalve, M. Márquez, I. Esnaola, H. Arguello
{"title":"双色散编码孔径光谱成像仪的压缩协方差矩阵估计","authors":"Jonathan Monsalve, M. Márquez, I. Esnaola, H. Arguello","doi":"10.1109/ICIP42928.2021.9506077","DOIUrl":null,"url":null,"abstract":"Compressive covariance sampling (CCS) theory aims to recover the covariance matrix (CM) of a signal, instead of the signal itself, from a reduced set of random linear projections. Although several theoretical works demonstrate the CCS theory’s advantages in compressive spectral imaging tasks, a real optical implementation has no been proposed. Therefore, this paper proposes a compressive spectral sensing protocol for the dual-dispersive coded aperture spectral snapshot imager (DD-CASSI) to directly estimate the covariance matrix of the signal. Specifically, we propose a coded aperture design that allows recasting the vector sensing problem into matrix form, which enables to exploit the covariance matrix structure such as positive-semidefiniteness, low-rank, or Toeplitz. Additionally, a low-rank approximation of the image is reconstructed using a Principal Components Analysis (PCA) based method. In order to test the precision of the reconstruction, some spectral signatures of the image are captured with a spectrometer and compared with those obtained in the reconstruction using the covariance matrix. Results show the reconstructed spectrum is accurate with a spectral angle mapper (SAM) of less than 14°. RGB image composites of the spectral image also provide evidence of a correct color reconstruction.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Compressive Covariance Matrix Estimation from a Dual-Dispersive Coded Aperture Spectral Imager\",\"authors\":\"Jonathan Monsalve, M. Márquez, I. Esnaola, H. Arguello\",\"doi\":\"10.1109/ICIP42928.2021.9506077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressive covariance sampling (CCS) theory aims to recover the covariance matrix (CM) of a signal, instead of the signal itself, from a reduced set of random linear projections. Although several theoretical works demonstrate the CCS theory’s advantages in compressive spectral imaging tasks, a real optical implementation has no been proposed. Therefore, this paper proposes a compressive spectral sensing protocol for the dual-dispersive coded aperture spectral snapshot imager (DD-CASSI) to directly estimate the covariance matrix of the signal. Specifically, we propose a coded aperture design that allows recasting the vector sensing problem into matrix form, which enables to exploit the covariance matrix structure such as positive-semidefiniteness, low-rank, or Toeplitz. Additionally, a low-rank approximation of the image is reconstructed using a Principal Components Analysis (PCA) based method. In order to test the precision of the reconstruction, some spectral signatures of the image are captured with a spectrometer and compared with those obtained in the reconstruction using the covariance matrix. Results show the reconstructed spectrum is accurate with a spectral angle mapper (SAM) of less than 14°. RGB image composites of the spectral image also provide evidence of a correct color reconstruction.\",\"PeriodicalId\":314429,\"journal\":{\"name\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP42928.2021.9506077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressive Covariance Matrix Estimation from a Dual-Dispersive Coded Aperture Spectral Imager
Compressive covariance sampling (CCS) theory aims to recover the covariance matrix (CM) of a signal, instead of the signal itself, from a reduced set of random linear projections. Although several theoretical works demonstrate the CCS theory’s advantages in compressive spectral imaging tasks, a real optical implementation has no been proposed. Therefore, this paper proposes a compressive spectral sensing protocol for the dual-dispersive coded aperture spectral snapshot imager (DD-CASSI) to directly estimate the covariance matrix of the signal. Specifically, we propose a coded aperture design that allows recasting the vector sensing problem into matrix form, which enables to exploit the covariance matrix structure such as positive-semidefiniteness, low-rank, or Toeplitz. Additionally, a low-rank approximation of the image is reconstructed using a Principal Components Analysis (PCA) based method. In order to test the precision of the reconstruction, some spectral signatures of the image are captured with a spectrometer and compared with those obtained in the reconstruction using the covariance matrix. Results show the reconstructed spectrum is accurate with a spectral angle mapper (SAM) of less than 14°. RGB image composites of the spectral image also provide evidence of a correct color reconstruction.