基于贝叶斯网络和黑盒优化的不确定策略生成

E. Faulkner
{"title":"基于贝叶斯网络和黑盒优化的不确定策略生成","authors":"E. Faulkner","doi":"10.1109/MCDM.2007.369418","DOIUrl":null,"url":null,"abstract":"We describe a mechanism for optimal strategy generation from a Bayesian belief network (BBN). This system takes a BBN model either created by the user or derived from data. The user then specifies a set of goals (consisting of both objectives and constraints) and the observed and actionable variables in the model. The system then applies an optimizer to develop strategies that optimally achieve the specified goals. The system can be used by either human decision makers or autonomous agents. A distinguishing feature of the system is the ability to return strategies in the form of deterministic actions that result in the highest probability of achieving the desired goals. This allows the user to execute the strategies without further reasoning. In this paper we describe the architecture of the system and show examples of developing strategies from models created either by domain experts or directly from data","PeriodicalId":306422,"journal":{"name":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Strategy Generation Under Uncertainty Using Bayesian Networks and Black Box Optimization\",\"authors\":\"E. Faulkner\",\"doi\":\"10.1109/MCDM.2007.369418\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a mechanism for optimal strategy generation from a Bayesian belief network (BBN). This system takes a BBN model either created by the user or derived from data. The user then specifies a set of goals (consisting of both objectives and constraints) and the observed and actionable variables in the model. The system then applies an optimizer to develop strategies that optimally achieve the specified goals. The system can be used by either human decision makers or autonomous agents. A distinguishing feature of the system is the ability to return strategies in the form of deterministic actions that result in the highest probability of achieving the desired goals. This allows the user to execute the strategies without further reasoning. In this paper we describe the architecture of the system and show examples of developing strategies from models created either by domain experts or directly from data\",\"PeriodicalId\":306422,\"journal\":{\"name\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCDM.2007.369418\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCDM.2007.369418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们描述了一种基于贝叶斯信念网络(BBN)的最优策略生成机制。该系统采用由用户创建或从数据派生的BBN模型。然后,用户指定一组目标(包括目标和约束)以及模型中观察到的和可操作的变量。然后,系统应用优化器来制定策略,以最佳方式实现指定的目标。该系统既可以由人类决策者使用,也可以由自主代理使用。该系统的一个显著特征是能够以确定性行动的形式返回策略,从而导致实现预期目标的最高概率。这允许用户无需进一步推理即可执行策略。在本文中,我们描述了系统的体系结构,并展示了从领域专家或直接从数据创建的模型中开发策略的示例
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strategy Generation Under Uncertainty Using Bayesian Networks and Black Box Optimization
We describe a mechanism for optimal strategy generation from a Bayesian belief network (BBN). This system takes a BBN model either created by the user or derived from data. The user then specifies a set of goals (consisting of both objectives and constraints) and the observed and actionable variables in the model. The system then applies an optimizer to develop strategies that optimally achieve the specified goals. The system can be used by either human decision makers or autonomous agents. A distinguishing feature of the system is the ability to return strategies in the form of deterministic actions that result in the highest probability of achieving the desired goals. This allows the user to execute the strategies without further reasoning. In this paper we describe the architecture of the system and show examples of developing strategies from models created either by domain experts or directly from data
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multi-criteria Set Partitioning for Portfolio Management: A Visual Interactive Method Exploring Robustness of Plans for Simulation-Based Course of Action Planning: A Framework and an Example On the Convergence of Multi-Objective Descent Algorithms Prediction of Stock Price Movements Based on Concept Map Information Interactive Utility Maximization in Multi-Objective Vehicle Routing Problems: A "Decision Maker in the Loop"-Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1