异构多核系统数据驱动的基于场景的应用映射

J. Spieck, S. Wildermann, T. Schwarzer, J. Teich, M. Glaß
{"title":"异构多核系统数据驱动的基于场景的应用映射","authors":"J. Spieck, S. Wildermann, T. Schwarzer, J. Teich, M. Glaß","doi":"10.1109/MCSoC.2019.00054","DOIUrl":null,"url":null,"abstract":"For applications whose workload and execution behavior significantly varies with the input, a single mapping of application tasks to a given target architecture is insufficient. A single mapping may deliver a high-quality solution for the average case but rarely exploits the specific execution behavior of concurrent tasks triggered by each input tuple. E.g., tasks with higher computational demands under certain input should be mapped onto high-performance resources of the heterogeneous architecture. This necessitates mappings that are specialized for specific input data. Yet, due to the large size of input combinations, determining a separate optimized mapping for each individual input workload is not feasible for most applications. As a remedy, we propose to group input data with similar execution characteristics into a selected, small number of so-called workload scenarios for which we supply optimized mappings. In this paper, we provide a data-driven approach for detecting workload scenarios and exploring scenario-optimized mappings based on a collection of input data. The identification of scenarios and the determination of optimized mappings are interdependent: For the data-driven identification of workload scenarios, we have to measure the profiles when executing the application with the given input data for different application mappings. However, to come up with scenario-optimized application mappings, the workload scenarios have to be known. We tackle this interdependence problem by proposing a cyclic design methodology that optimizes both aspects in an iterative fashion. It is shown that with our approach, the latency of two exemplary applications, a ray tracing as well as an image stitching application, can be significantly improved compared to methods that ignore workload scenarios or do not perform the proposed iterative refinement. Furthermore, we demonstrate that our proposal can be used in the context of a hybrid application mapping methodology.","PeriodicalId":104240,"journal":{"name":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"158 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Data-Driven Scenario-Based Application Mapping for Heterogeneous Many-Core Systems\",\"authors\":\"J. Spieck, S. Wildermann, T. Schwarzer, J. Teich, M. Glaß\",\"doi\":\"10.1109/MCSoC.2019.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For applications whose workload and execution behavior significantly varies with the input, a single mapping of application tasks to a given target architecture is insufficient. A single mapping may deliver a high-quality solution for the average case but rarely exploits the specific execution behavior of concurrent tasks triggered by each input tuple. E.g., tasks with higher computational demands under certain input should be mapped onto high-performance resources of the heterogeneous architecture. This necessitates mappings that are specialized for specific input data. Yet, due to the large size of input combinations, determining a separate optimized mapping for each individual input workload is not feasible for most applications. As a remedy, we propose to group input data with similar execution characteristics into a selected, small number of so-called workload scenarios for which we supply optimized mappings. In this paper, we provide a data-driven approach for detecting workload scenarios and exploring scenario-optimized mappings based on a collection of input data. The identification of scenarios and the determination of optimized mappings are interdependent: For the data-driven identification of workload scenarios, we have to measure the profiles when executing the application with the given input data for different application mappings. However, to come up with scenario-optimized application mappings, the workload scenarios have to be known. We tackle this interdependence problem by proposing a cyclic design methodology that optimizes both aspects in an iterative fashion. It is shown that with our approach, the latency of two exemplary applications, a ray tracing as well as an image stitching application, can be significantly improved compared to methods that ignore workload scenarios or do not perform the proposed iterative refinement. Furthermore, we demonstrate that our proposal can be used in the context of a hybrid application mapping methodology.\",\"PeriodicalId\":104240,\"journal\":{\"name\":\"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"158 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC.2019.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 13th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC.2019.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

对于其工作负载和执行行为随输入而显著变化的应用程序,将应用程序任务映射到给定的目标体系结构是不够的。单个映射可以为一般情况提供高质量的解决方案,但很少利用由每个输入元组触发的并发任务的特定执行行为。例如,在一定输入条件下具有较高计算需求的任务应映射到异构架构的高性能资源上。这就需要专门针对特定输入数据的映射。然而,由于输入组合的规模很大,对于大多数应用程序来说,为每个单独的输入工作负载确定单独的优化映射是不可行的。作为补救措施,我们建议将具有类似执行特征的输入数据分组到选定的少数所谓的工作负载场景中,我们为这些场景提供优化的映射。在本文中,我们提供了一种数据驱动的方法,用于检测工作负载场景,并基于一组输入数据探索场景优化映射。场景的识别和优化映射的确定是相互依赖的:对于工作负载场景的数据驱动识别,我们必须在使用不同应用程序映射的给定输入数据执行应用程序时度量配置文件。然而,要实现场景优化的应用程序映射,必须了解工作负载场景。我们通过提出一种循环设计方法来解决这种相互依赖的问题,该方法以迭代的方式优化了这两个方面。结果表明,与忽略工作负载场景或不执行所提出的迭代细化的方法相比,使用我们的方法,两个示例应用程序(光线跟踪和图像拼接应用程序)的延迟可以显着改善。此外,我们证明了我们的建议可以在混合应用程序映射方法的上下文中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data-Driven Scenario-Based Application Mapping for Heterogeneous Many-Core Systems
For applications whose workload and execution behavior significantly varies with the input, a single mapping of application tasks to a given target architecture is insufficient. A single mapping may deliver a high-quality solution for the average case but rarely exploits the specific execution behavior of concurrent tasks triggered by each input tuple. E.g., tasks with higher computational demands under certain input should be mapped onto high-performance resources of the heterogeneous architecture. This necessitates mappings that are specialized for specific input data. Yet, due to the large size of input combinations, determining a separate optimized mapping for each individual input workload is not feasible for most applications. As a remedy, we propose to group input data with similar execution characteristics into a selected, small number of so-called workload scenarios for which we supply optimized mappings. In this paper, we provide a data-driven approach for detecting workload scenarios and exploring scenario-optimized mappings based on a collection of input data. The identification of scenarios and the determination of optimized mappings are interdependent: For the data-driven identification of workload scenarios, we have to measure the profiles when executing the application with the given input data for different application mappings. However, to come up with scenario-optimized application mappings, the workload scenarios have to be known. We tackle this interdependence problem by proposing a cyclic design methodology that optimizes both aspects in an iterative fashion. It is shown that with our approach, the latency of two exemplary applications, a ray tracing as well as an image stitching application, can be significantly improved compared to methods that ignore workload scenarios or do not perform the proposed iterative refinement. Furthermore, we demonstrate that our proposal can be used in the context of a hybrid application mapping methodology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Algorithm to Determine Extended Edit Distance between Program Codes Smart Ontology-Based Event Identification Automatic Generation of Fill-in-the-Blank Programming Problems Prototype of FPGA Dynamic Reconfiguration Based-on Context-Oriented Programming An Efficient Implementation of a TAGE Branch Predictor for Soft Processors on FPGA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1