MPIX流:混合MPI+X编程的显式解决方案

Hui Zhou, Kenneth Raffenetti, Yan-Hua Guo, R. Thakur
{"title":"MPIX流:混合MPI+X编程的显式解决方案","authors":"Hui Zhou, Kenneth Raffenetti, Yan-Hua Guo, R. Thakur","doi":"10.1145/3555819.3555820","DOIUrl":null,"url":null,"abstract":"The hybrid MPI+X programming paradigm, where X refers to threads or GPUs, has gained prominence in the high-performance computing arena. This corresponds to a trend of system architectures growing more heterogeneous. The current MPI standard only specifies the compatibility levels between MPI and threading runtimes. No MPI concept or interface exists for applications to pass thread context or GPU stream context to MPI implementations explicitly. This lack has made performance optimization complicated in some cases and impossible in other cases. We propose a new concept in MPI, called MPIX stream, to represent the general serial execution context that exists in X runtimes. MPIX streams can be directly mapped to threads or GPU execution streams. Passing thread context into MPI allows implementations to precisely map the execution contexts to network endpoints. Passing GPU execution context into MPI allows implementations to directly operate on GPU streams, lowering the CPU/GPU synchronization cost.","PeriodicalId":423846,"journal":{"name":"Proceedings of the 29th European MPI Users' Group Meeting","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"MPIX Stream: An Explicit Solution to Hybrid MPI+X Programming\",\"authors\":\"Hui Zhou, Kenneth Raffenetti, Yan-Hua Guo, R. Thakur\",\"doi\":\"10.1145/3555819.3555820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The hybrid MPI+X programming paradigm, where X refers to threads or GPUs, has gained prominence in the high-performance computing arena. This corresponds to a trend of system architectures growing more heterogeneous. The current MPI standard only specifies the compatibility levels between MPI and threading runtimes. No MPI concept or interface exists for applications to pass thread context or GPU stream context to MPI implementations explicitly. This lack has made performance optimization complicated in some cases and impossible in other cases. We propose a new concept in MPI, called MPIX stream, to represent the general serial execution context that exists in X runtimes. MPIX streams can be directly mapped to threads or GPU execution streams. Passing thread context into MPI allows implementations to precisely map the execution contexts to network endpoints. Passing GPU execution context into MPI allows implementations to directly operate on GPU streams, lowering the CPU/GPU synchronization cost.\",\"PeriodicalId\":423846,\"journal\":{\"name\":\"Proceedings of the 29th European MPI Users' Group Meeting\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th European MPI Users' Group Meeting\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3555819.3555820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th European MPI Users' Group Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555819.3555820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

混合MPI+X编程范式(其中X指线程或gpu)在高性能计算领域获得了突出地位。这与系统架构越来越异构的趋势相对应。当前的MPI标准只指定了MPI和线程运行时之间的兼容性级别。没有MPI概念或接口存在,应用程序可以显式地将线程上下文或GPU流上下文传递给MPI实现。这种缺乏使得性能优化在某些情况下变得复杂,而在其他情况下则不可能。我们在MPI中提出了一个新的概念,称为MPIX流,来表示存在于X运行时中的通用串行执行上下文。MPIX流可以直接映射到线程或GPU执行流。将线程上下文传递到MPI允许实现精确地将执行上下文映射到网络端点。将GPU执行上下文传递到MPI允许实现直接操作GPU流,降低CPU/GPU同步成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MPIX Stream: An Explicit Solution to Hybrid MPI+X Programming
The hybrid MPI+X programming paradigm, where X refers to threads or GPUs, has gained prominence in the high-performance computing arena. This corresponds to a trend of system architectures growing more heterogeneous. The current MPI standard only specifies the compatibility levels between MPI and threading runtimes. No MPI concept or interface exists for applications to pass thread context or GPU stream context to MPI implementations explicitly. This lack has made performance optimization complicated in some cases and impossible in other cases. We propose a new concept in MPI, called MPIX stream, to represent the general serial execution context that exists in X runtimes. MPIX streams can be directly mapped to threads or GPU execution streams. Passing thread context into MPI allows implementations to precisely map the execution contexts to network endpoints. Passing GPU execution context into MPI allows implementations to directly operate on GPU streams, lowering the CPU/GPU synchronization cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributed Acceleration of Adhesive Dynamics Simulations Applying on Node Aggregation Methods to MPI Alltoall Collectives: Matrix Block Aggregation Algorithm Efficient Process Arrival Pattern Aware Collective Communication for Deep Learning Enabling Global MPI Process Addressing in MPI Applications Towards a Hybrid MPI Correctness Benchmark Suite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1