基于马氏距离加权归一化PCA的人脸识别

Nwayyin Najat Mohammed, MD. khaleel, M. Latif, Zana Khalid
{"title":"基于马氏距离加权归一化PCA的人脸识别","authors":"Nwayyin Najat Mohammed, MD. khaleel, M. Latif, Zana Khalid","doi":"10.1109/ICIIBMS.2018.8549971","DOIUrl":null,"url":null,"abstract":"The principle component analysis(PCA) is a common feature extraction method in machine learning and pattern recognition approaches. PCA has been used in many applications, and face recognition in which specific faces are recognizing in an images database is one of the popular applications. The default distance metric which has been used with PCA based-face recognition is Euclidean distance. In this study, we have tested the Mahalanobis distance instead of Euclidean, and PCA based on Mahalanobis distance suggested a better performance on our students images database with highest recognition rate. However, we proposed weighted and normalized Mahalanobis distance based PCA-face recognition(PCA_WNMD). The proposed algorithm (PCA_WNMD) showed an improvement in faces recognition rate when tested on our students images database compared to PCA based on Mahalanobis and default Euclidean distances.","PeriodicalId":430326,"journal":{"name":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Face Recognition Based on PCA with Weighted and Normalized Mahalanobis distance\",\"authors\":\"Nwayyin Najat Mohammed, MD. khaleel, M. Latif, Zana Khalid\",\"doi\":\"10.1109/ICIIBMS.2018.8549971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The principle component analysis(PCA) is a common feature extraction method in machine learning and pattern recognition approaches. PCA has been used in many applications, and face recognition in which specific faces are recognizing in an images database is one of the popular applications. The default distance metric which has been used with PCA based-face recognition is Euclidean distance. In this study, we have tested the Mahalanobis distance instead of Euclidean, and PCA based on Mahalanobis distance suggested a better performance on our students images database with highest recognition rate. However, we proposed weighted and normalized Mahalanobis distance based PCA-face recognition(PCA_WNMD). The proposed algorithm (PCA_WNMD) showed an improvement in faces recognition rate when tested on our students images database compared to PCA based on Mahalanobis and default Euclidean distances.\",\"PeriodicalId\":430326,\"journal\":{\"name\":\"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"volume\":\"155 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIIBMS.2018.8549971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIIBMS.2018.8549971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

主成分分析(PCA)是机器学习和模式识别中常用的特征提取方法。PCA在很多应用中都得到了应用,其中人脸识别就是在图像数据库中对特定的人脸进行识别。基于PCA的人脸识别的默认距离度量是欧氏距离。在本研究中,我们测试了马氏距离而不是欧氏距离,基于马氏距离的PCA在我们的学生图像数据库中表现出更好的性能,识别率最高。然而,我们提出了加权和归一化的基于马氏距离的pca人脸识别(PCA_WNMD)。与基于Mahalanobis和默认欧氏距离的PCA相比,本文提出的算法(PCA_WNMD)在学生图像数据库上的人脸识别率有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Face Recognition Based on PCA with Weighted and Normalized Mahalanobis distance
The principle component analysis(PCA) is a common feature extraction method in machine learning and pattern recognition approaches. PCA has been used in many applications, and face recognition in which specific faces are recognizing in an images database is one of the popular applications. The default distance metric which has been used with PCA based-face recognition is Euclidean distance. In this study, we have tested the Mahalanobis distance instead of Euclidean, and PCA based on Mahalanobis distance suggested a better performance on our students images database with highest recognition rate. However, we proposed weighted and normalized Mahalanobis distance based PCA-face recognition(PCA_WNMD). The proposed algorithm (PCA_WNMD) showed an improvement in faces recognition rate when tested on our students images database compared to PCA based on Mahalanobis and default Euclidean distances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Neuronal Dynamic Framework of Cerebral Cortical Networks for Spontaneous Behaviors User Experience Evaluation on the Cryptocurrency Website by Trust Aspect Energy and Cost Efficient Navigation Technique for the Visually Impaired Transforming Auto-Encoder and Decoder Network for Pediatric Bone Image Segmentation using a State-of-the-art Semantic Segmentation network on Bone Radiographs Observer design of high throughput screening system based on dioid
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1