一个量化软件错误倾向的框架

R. Sitte
{"title":"一个量化软件错误倾向的框架","authors":"R. Sitte","doi":"10.1109/APAQ.2000.883779","DOIUrl":null,"url":null,"abstract":"This paper proposes a framework for assessing quantitatively the error-proneness of computer program modules. The model uses an information theory approach to derive an error proneness index, that can be used in a practical way. Debugging and testing rake at least 40% of a software project's effort, but do not uncover all defects. While current research looks at identifying problem-modules in a program, no attempt is made for a quantitative error-proneness evaluation. By quantitatively assessing a module's susceptibility to error, we are able to identify error prone paths in a program and enhance testing efficiency. The goal is to identify error prone paths in a program using genetic algorithms. This increases software reliability, aids in testing design, and reduces software development cost.","PeriodicalId":432680,"journal":{"name":"Proceedings First Asia-Pacific Conference on Quality Software","volume":"25 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A framework for quantifying error proneness in software\",\"authors\":\"R. Sitte\",\"doi\":\"10.1109/APAQ.2000.883779\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a framework for assessing quantitatively the error-proneness of computer program modules. The model uses an information theory approach to derive an error proneness index, that can be used in a practical way. Debugging and testing rake at least 40% of a software project's effort, but do not uncover all defects. While current research looks at identifying problem-modules in a program, no attempt is made for a quantitative error-proneness evaluation. By quantitatively assessing a module's susceptibility to error, we are able to identify error prone paths in a program and enhance testing efficiency. The goal is to identify error prone paths in a program using genetic algorithms. This increases software reliability, aids in testing design, and reduces software development cost.\",\"PeriodicalId\":432680,\"journal\":{\"name\":\"Proceedings First Asia-Pacific Conference on Quality Software\",\"volume\":\"25 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings First Asia-Pacific Conference on Quality Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APAQ.2000.883779\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings First Asia-Pacific Conference on Quality Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APAQ.2000.883779","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

本文提出了一个定量评估计算机程序模块错误率的框架。该模型采用信息论的方法推导出一个具有实际应用价值的误差倾向性指标。调试和测试至少占软件项目工作的40%,但并不能发现所有的缺陷。虽然目前的研究着眼于识别程序中的问题模块,但没有尝试对错误倾向进行定量评估。通过定量评估模块对错误的敏感性,我们能够识别程序中容易出错的路径,并提高测试效率。目标是使用遗传算法识别程序中容易出错的路径。这增加了软件的可靠性,有助于测试设计,并降低了软件开发成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A framework for quantifying error proneness in software
This paper proposes a framework for assessing quantitatively the error-proneness of computer program modules. The model uses an information theory approach to derive an error proneness index, that can be used in a practical way. Debugging and testing rake at least 40% of a software project's effort, but do not uncover all defects. While current research looks at identifying problem-modules in a program, no attempt is made for a quantitative error-proneness evaluation. By quantitatively assessing a module's susceptibility to error, we are able to identify error prone paths in a program and enhance testing efficiency. The goal is to identify error prone paths in a program using genetic algorithms. This increases software reliability, aids in testing design, and reduces software development cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Testing for imperfect integration of legacy software components A framework for quantifying error proneness in software An object-oriented web test model for testing Web applications A formal mechanism for assessing polymorphism in object-oriented systems Control of nondeterminism in testing distributed multithreaded programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1