睡眠

Devashree Tripathy, Hadi Zamani, Debiprasanna Sahoo, L. Bhuyan, M. Satpathy
{"title":"睡眠","authors":"Devashree Tripathy, Hadi Zamani, Debiprasanna Sahoo, L. Bhuyan, M. Satpathy","doi":"10.1145/3370748.3406577","DOIUrl":null,"url":null,"abstract":"The leakage power dissipation has become one of the major concerns with technology scaling. The GPGPU register file has grown in size over last decade in order to support the parallel execution of thousands of threads. Given that each thread has its own dedicated set of physical registers, these registers remain idle when corresponding threads go for long latency operation. Existing research shows that the leakage energy consumption of the register file can be reduced by under volting the idle registers to a data-retentive low-leakage voltage (Drowsy Voltage) to ensure that the data is not lost while not in use. In this paper, we develop a realistic model for determining the wake-up time of registers from various under-volting and power gating modes. Next, we propose a hybrid energy saving technique where a combination of power-gating and under-volting can be used to save optimum energy depending on the idle period of the registers with a negligible performance penalty. Our simulation shows that the hybrid energy-saving technique results in 94% leakage energy savings in register files on an average when compared with the conventional clock gating technique and 9% higher leakage energy saving compared to the state-of-art technique.","PeriodicalId":116486,"journal":{"name":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Slumber\",\"authors\":\"Devashree Tripathy, Hadi Zamani, Debiprasanna Sahoo, L. Bhuyan, M. Satpathy\",\"doi\":\"10.1145/3370748.3406577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The leakage power dissipation has become one of the major concerns with technology scaling. The GPGPU register file has grown in size over last decade in order to support the parallel execution of thousands of threads. Given that each thread has its own dedicated set of physical registers, these registers remain idle when corresponding threads go for long latency operation. Existing research shows that the leakage energy consumption of the register file can be reduced by under volting the idle registers to a data-retentive low-leakage voltage (Drowsy Voltage) to ensure that the data is not lost while not in use. In this paper, we develop a realistic model for determining the wake-up time of registers from various under-volting and power gating modes. Next, we propose a hybrid energy saving technique where a combination of power-gating and under-volting can be used to save optimum energy depending on the idle period of the registers with a negligible performance penalty. Our simulation shows that the hybrid energy-saving technique results in 94% leakage energy savings in register files on an average when compared with the conventional clock gating technique and 9% higher leakage energy saving compared to the state-of-art technique.\",\"PeriodicalId\":116486,\"journal\":{\"name\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"volume\":\"299 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3370748.3406577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM/IEEE International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3370748.3406577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Slumber
The leakage power dissipation has become one of the major concerns with technology scaling. The GPGPU register file has grown in size over last decade in order to support the parallel execution of thousands of threads. Given that each thread has its own dedicated set of physical registers, these registers remain idle when corresponding threads go for long latency operation. Existing research shows that the leakage energy consumption of the register file can be reduced by under volting the idle registers to a data-retentive low-leakage voltage (Drowsy Voltage) to ensure that the data is not lost while not in use. In this paper, we develop a realistic model for determining the wake-up time of registers from various under-volting and power gating modes. Next, we propose a hybrid energy saving technique where a combination of power-gating and under-volting can be used to save optimum energy depending on the idle period of the registers with a negligible performance penalty. Our simulation shows that the hybrid energy-saving technique results in 94% leakage energy savings in register files on an average when compared with the conventional clock gating technique and 9% higher leakage energy saving compared to the state-of-art technique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Domain-Specific System-On-Chip Design for Energy Efficient Wearable Edge AI Applications HOGEye: Neural Approximation of HOG Feature Extraction in RRAM-Based 3D-Stacked Image Sensors Improving Performance and Power by Co-Optimizing Middle-of-Line Routing, Pin Pattern Generation, and Contact over Active Gates in Standard Cell Layout Synthesis Exploiting successive identical words and differences with dynamic bases for effective compression in Non-Volatile Memories Canopy: A CNFET-based Process Variation Aware Systolic DNN Accelerator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1