下一代多相流模拟的可扩展自适应算法

K. Saurabh, Masado Ishii, Makrand A. Khanwale, H. Sundar, B. Ganapathysubramanian
{"title":"下一代多相流模拟的可扩展自适应算法","authors":"K. Saurabh, Masado Ishii, Makrand A. Khanwale, H. Sundar, B. Ganapathysubramanian","doi":"10.1109/IPDPS54959.2023.00065","DOIUrl":null,"url":null,"abstract":"High-fidelity flow simulations are indispensable when analyzing systems exhibiting multiphase flow phenomena. The accuracy of multiphase flow simulations is strongly contingent upon the finest mesh resolution used to represent the fluid-fluid interfaces. However, the increased resolution comes at a higher computational cost. In this work, we propose algorithmic advances that aim to reduce the computational cost without compromising on the physics by selectively detecting key regions of interest (droplets/filaments) that require significantly higher resolution. The framework uses an adaptive octree–based meshing framework that is integrated with PETSc’s linear algebra solvers. We demonstrate scaling of the framework up to 114,688 processes on TACC’s Frontera. Finally, we deploy the framework to simulate one of the most resolved simulations of primary jet atomization. This simulation – equivalent to 35 trillion grid points on a uniform grid – is 64× larger than current state–of–the–art simulations and provides unprecedented insights into an important flow physics problem with a diverse array of engineering applications.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable adaptive algorithms for next-generation multiphase flow simulations\",\"authors\":\"K. Saurabh, Masado Ishii, Makrand A. Khanwale, H. Sundar, B. Ganapathysubramanian\",\"doi\":\"10.1109/IPDPS54959.2023.00065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-fidelity flow simulations are indispensable when analyzing systems exhibiting multiphase flow phenomena. The accuracy of multiphase flow simulations is strongly contingent upon the finest mesh resolution used to represent the fluid-fluid interfaces. However, the increased resolution comes at a higher computational cost. In this work, we propose algorithmic advances that aim to reduce the computational cost without compromising on the physics by selectively detecting key regions of interest (droplets/filaments) that require significantly higher resolution. The framework uses an adaptive octree–based meshing framework that is integrated with PETSc’s linear algebra solvers. We demonstrate scaling of the framework up to 114,688 processes on TACC’s Frontera. Finally, we deploy the framework to simulate one of the most resolved simulations of primary jet atomization. This simulation – equivalent to 35 trillion grid points on a uniform grid – is 64× larger than current state–of–the–art simulations and provides unprecedented insights into an important flow physics problem with a diverse array of engineering applications.\",\"PeriodicalId\":343684,\"journal\":{\"name\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS54959.2023.00065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在分析具有多相流动现象的系统时,高保真的流动模拟是必不可少的。多相流模拟的准确性很大程度上取决于用于表示流体-流体界面的最佳网格分辨率。然而,提高的分辨率带来了更高的计算成本。在这项工作中,我们提出了算法的进步,旨在通过选择性地检测需要更高分辨率的关键区域(液滴/细丝)来降低计算成本,同时不影响物理特性。该框架使用了一个基于八叉树的自适应网格框架,该框架与PETSc的线性代数求解器相结合。我们在TACC的Frontera上演示了将框架扩展到114,688个进程。最后,我们部署了该框架来模拟一次射流雾化的最精确的模拟之一。该模拟相当于统一网格上的35万亿个网格点,比目前最先进的模拟大64倍,并为各种工程应用的重要流动物理问题提供了前所未有的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scalable adaptive algorithms for next-generation multiphase flow simulations
High-fidelity flow simulations are indispensable when analyzing systems exhibiting multiphase flow phenomena. The accuracy of multiphase flow simulations is strongly contingent upon the finest mesh resolution used to represent the fluid-fluid interfaces. However, the increased resolution comes at a higher computational cost. In this work, we propose algorithmic advances that aim to reduce the computational cost without compromising on the physics by selectively detecting key regions of interest (droplets/filaments) that require significantly higher resolution. The framework uses an adaptive octree–based meshing framework that is integrated with PETSc’s linear algebra solvers. We demonstrate scaling of the framework up to 114,688 processes on TACC’s Frontera. Finally, we deploy the framework to simulate one of the most resolved simulations of primary jet atomization. This simulation – equivalent to 35 trillion grid points on a uniform grid – is 64× larger than current state–of–the–art simulations and provides unprecedented insights into an important flow physics problem with a diverse array of engineering applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GPU-Accelerated Error-Bounded Compression Framework for Quantum Circuit Simulations Generalizable Reinforcement Learning-Based Coarsening Model for Resource Allocation over Large and Diverse Stream Processing Graphs Smart Redbelly Blockchain: Reducing Congestion for Web3 QoS-Aware and Cost-Efficient Dynamic Resource Allocation for Serverless ML Workflows Fast Sparse GPU Kernels for Accelerated Training of Graph Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1