{"title":"量化顺序推荐没有私人数据","authors":"Lin-Sheng Shi, Yuang Liu, J. Wang, Wei Zhang","doi":"10.1145/3543507.3583351","DOIUrl":null,"url":null,"abstract":"Deep neural networks have achieved great success in sequential recommendation systems. While maintaining high competence in user modeling and next-item recommendation, these models have long been plagued by the numerous parameters and computation, which inhibit them to be deployed on resource-constrained mobile devices. Model quantization, as one of the main paradigms for compression techniques, converts float parameters to low-bit values to reduce parameter redundancy and accelerate inference. To avoid drastic performance degradation, it usually requests a fine-tuning phase with an original dataset. However, the training set of user-item interactions is not always available due to transmission limits or privacy concerns. In this paper, we propose a novel framework to quantize sequential recommenders without access to any real private data. A generator is employed in the framework to synthesize fake sequence samples to feed the quantized sequential recommendation model and minimize the gap with a full-precision sequential recommendation model. The generator and the quantized model are optimized with a min-max game — alternating discrepancy estimation and knowledge transfer. Moreover, we devise a two-level discrepancy modeling strategy to transfer information between the quantized model and the full-precision model. The extensive experiments of various recommendation networks on three public datasets demonstrate the effectiveness of the proposed framework.","PeriodicalId":296351,"journal":{"name":"Proceedings of the ACM Web Conference 2023","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantize Sequential Recommenders Without Private Data\",\"authors\":\"Lin-Sheng Shi, Yuang Liu, J. Wang, Wei Zhang\",\"doi\":\"10.1145/3543507.3583351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural networks have achieved great success in sequential recommendation systems. While maintaining high competence in user modeling and next-item recommendation, these models have long been plagued by the numerous parameters and computation, which inhibit them to be deployed on resource-constrained mobile devices. Model quantization, as one of the main paradigms for compression techniques, converts float parameters to low-bit values to reduce parameter redundancy and accelerate inference. To avoid drastic performance degradation, it usually requests a fine-tuning phase with an original dataset. However, the training set of user-item interactions is not always available due to transmission limits or privacy concerns. In this paper, we propose a novel framework to quantize sequential recommenders without access to any real private data. A generator is employed in the framework to synthesize fake sequence samples to feed the quantized sequential recommendation model and minimize the gap with a full-precision sequential recommendation model. The generator and the quantized model are optimized with a min-max game — alternating discrepancy estimation and knowledge transfer. Moreover, we devise a two-level discrepancy modeling strategy to transfer information between the quantized model and the full-precision model. The extensive experiments of various recommendation networks on three public datasets demonstrate the effectiveness of the proposed framework.\",\"PeriodicalId\":296351,\"journal\":{\"name\":\"Proceedings of the ACM Web Conference 2023\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ACM Web Conference 2023\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3543507.3583351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ACM Web Conference 2023","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3543507.3583351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantize Sequential Recommenders Without Private Data
Deep neural networks have achieved great success in sequential recommendation systems. While maintaining high competence in user modeling and next-item recommendation, these models have long been plagued by the numerous parameters and computation, which inhibit them to be deployed on resource-constrained mobile devices. Model quantization, as one of the main paradigms for compression techniques, converts float parameters to low-bit values to reduce parameter redundancy and accelerate inference. To avoid drastic performance degradation, it usually requests a fine-tuning phase with an original dataset. However, the training set of user-item interactions is not always available due to transmission limits or privacy concerns. In this paper, we propose a novel framework to quantize sequential recommenders without access to any real private data. A generator is employed in the framework to synthesize fake sequence samples to feed the quantized sequential recommendation model and minimize the gap with a full-precision sequential recommendation model. The generator and the quantized model are optimized with a min-max game — alternating discrepancy estimation and knowledge transfer. Moreover, we devise a two-level discrepancy modeling strategy to transfer information between the quantized model and the full-precision model. The extensive experiments of various recommendation networks on three public datasets demonstrate the effectiveness of the proposed framework.