一种新的基于对比模式的不平衡数据分类

Xiangtao Chen, Yajing Gao, Siqi Ren
{"title":"一种新的基于对比模式的不平衡数据分类","authors":"Xiangtao Chen, Yajing Gao, Siqi Ren","doi":"10.1145/3284557.3284708","DOIUrl":null,"url":null,"abstract":"Contrast pattern-based classifiers become more understandable and accurate on binary classification. However, these classifiers do not achieve good performance on class imbalance problems. Thus, this paper introduces a new contrast pattern-based classifier for class imbalance problems. The proposed method selects the appropriate contrast patterns by quality measures. Then we combine the quality measure of the pattern and class confidence proportion with the class imbalance level at the classification stage of the model. The simulation results show that our proposed outperforms the current contrast pattern-based classifiers and other state-of-the-art classifiers not directly based on contrast patterns for class imbalance problems.","PeriodicalId":272487,"journal":{"name":"Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A New Contrast Pattern-Based Classification for Imbalanced Data\",\"authors\":\"Xiangtao Chen, Yajing Gao, Siqi Ren\",\"doi\":\"10.1145/3284557.3284708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contrast pattern-based classifiers become more understandable and accurate on binary classification. However, these classifiers do not achieve good performance on class imbalance problems. Thus, this paper introduces a new contrast pattern-based classifier for class imbalance problems. The proposed method selects the appropriate contrast patterns by quality measures. Then we combine the quality measure of the pattern and class confidence proportion with the class imbalance level at the classification stage of the model. The simulation results show that our proposed outperforms the current contrast pattern-based classifiers and other state-of-the-art classifiers not directly based on contrast patterns for class imbalance problems.\",\"PeriodicalId\":272487,\"journal\":{\"name\":\"Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3284557.3284708\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Symposium on Computer Science and Intelligent Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3284557.3284708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

基于对比模式的分类器在二元分类上更加易于理解和准确。然而,这些分类器在类不平衡问题上并没有取得很好的性能。因此,本文引入了一种新的基于对比模式的分类器来解决类不平衡问题。该方法通过质量度量选择合适的对比模式。然后,我们将模型分类阶段的模式质量度量和类置信比例与类失衡水平相结合。仿真结果表明,我们提出的分类器在分类不平衡问题上优于当前基于对比模式的分类器和其他不直接基于对比模式的最先进分类器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A New Contrast Pattern-Based Classification for Imbalanced Data
Contrast pattern-based classifiers become more understandable and accurate on binary classification. However, these classifiers do not achieve good performance on class imbalance problems. Thus, this paper introduces a new contrast pattern-based classifier for class imbalance problems. The proposed method selects the appropriate contrast patterns by quality measures. Then we combine the quality measure of the pattern and class confidence proportion with the class imbalance level at the classification stage of the model. The simulation results show that our proposed outperforms the current contrast pattern-based classifiers and other state-of-the-art classifiers not directly based on contrast patterns for class imbalance problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of 2 DOF Truck's Suspension Seat for Improving Ride Comfort A Case Study on Granularity of Industrial Vision Services Design of Digital Pressure Measuring System Based on Bmp085 Robust and Efficient Text: Line Extraction by Local Minimal Sub-Seams A Study of the Security Problems of Wireless Sensor Networks into the Context of the Internet of Things
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1