横向膨胀的高导电性流体中磁场的演化

M. Shokri, N. Sadooghi
{"title":"横向膨胀的高导电性流体中磁场的演化","authors":"M. Shokri, N. Sadooghi","doi":"10.22323/1.336.0162","DOIUrl":null,"url":null,"abstract":"Due to the absence of a transverse expansion with respect to the beam direction, the Bjorken flow is unable to describe certain observables in heavy ion collisions. This caveat has motivated the introduction of analytical relativistic hydrodynamics (RH) solutions with transverse expansion, in particular, the 3+1 self-similar (SSF) and Gubser flows. Inspired by recent generalizations of the Bjorken flow to the relativistic magnetohydrodynamics (RMHD), we present a procedure for a generalization of RH solutions to RMHD. Our method is mainly based on symmetry arguments. Using this method, we find the relation between RH degrees of freedom and the magnetic field evolution in the ideal limit for an infinitely conductive fluid, and determine the proper time dependence of the magnetic field in aforementioned flows. In the case of SSF, a family of solutions are found that are related through a certain differential equation. To find the magnetic field evolution in the Gubser flow, we solve RMHD equations for a stationary fluid in a conformally flat $dS^3\\times E^1$ spacetime. The result is then Weyl transformed back into the Minkowski spacetime. In this case, the temporal evolution of the magnetic field exhibits a transmission between $1/t$ to $1/t^3$ near the center of the collision. The longitudinal component of the magnetic field is found to be sensitive to the transverse size of the fluid. We also find the radial evolution of the magnetic field for both flows. The radial domain of validity in the case of SSF is highly restricted, in contrast to the Gubser flow. A comparison of the results suggests that the Gubser RMHD may give a more appropriate qualitative picture of the magnetic field decay in the quark-gluon plasma (QGP).","PeriodicalId":441384,"journal":{"name":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Evolution of magnetic fields in a transversely expanding highly conductive fluid\",\"authors\":\"M. Shokri, N. Sadooghi\",\"doi\":\"10.22323/1.336.0162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Due to the absence of a transverse expansion with respect to the beam direction, the Bjorken flow is unable to describe certain observables in heavy ion collisions. This caveat has motivated the introduction of analytical relativistic hydrodynamics (RH) solutions with transverse expansion, in particular, the 3+1 self-similar (SSF) and Gubser flows. Inspired by recent generalizations of the Bjorken flow to the relativistic magnetohydrodynamics (RMHD), we present a procedure for a generalization of RH solutions to RMHD. Our method is mainly based on symmetry arguments. Using this method, we find the relation between RH degrees of freedom and the magnetic field evolution in the ideal limit for an infinitely conductive fluid, and determine the proper time dependence of the magnetic field in aforementioned flows. In the case of SSF, a family of solutions are found that are related through a certain differential equation. To find the magnetic field evolution in the Gubser flow, we solve RMHD equations for a stationary fluid in a conformally flat $dS^3\\\\times E^1$ spacetime. The result is then Weyl transformed back into the Minkowski spacetime. In this case, the temporal evolution of the magnetic field exhibits a transmission between $1/t$ to $1/t^3$ near the center of the collision. The longitudinal component of the magnetic field is found to be sensitive to the transverse size of the fluid. We also find the radial evolution of the magnetic field for both flows. The radial domain of validity in the case of SSF is highly restricted, in contrast to the Gubser flow. A comparison of the results suggests that the Gubser RMHD may give a more appropriate qualitative picture of the magnetic field decay in the quark-gluon plasma (QGP).\",\"PeriodicalId\":441384,\"journal\":{\"name\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22323/1.336.0162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of XIII Quark Confinement and the Hadron Spectrum — PoS(Confinement2018)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.336.0162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于缺少相对于束流方向的横向膨胀,比约肯流无法描述重离子碰撞中的某些可观察到的现象。这一警告推动了横向膨胀的解析相对论流体力学(RH)解决方案的引入,特别是3+1自相似(SSF)和Gubser流。受Bjorken流最近推广到相对论磁流体动力学(RMHD)的启发,我们提出了一个将RH解推广到RMHD的过程。我们的方法主要基于对称参数。利用该方法,我们找到了无限导电性流体在理想极限下的RH自由度与磁场演化的关系,并确定了上述流动中磁场的固有时变关系。在SSF的情况下,我们找到了通过某个微分方程相关联的一组解。为了求出Gubser流中的磁场演化,我们在共形平面中求解了一个静止流体的RMHD方程(dS^3\乘以E^1$)。结果是Weyl转换回闵可夫斯基时空。在这种情况下,磁场的时间演化表现出在碰撞中心附近$1/t$到$1/t^3$之间的传输。发现磁场的纵向分量对流体的横向尺寸很敏感。我们还发现了两种流体磁场的径向演化。与Gubser流相反,SSF的径向有效域受到高度限制。结果的比较表明,Gubser RMHD可以给出夸克-胶子等离子体(QGP)磁场衰减的更合适的定性图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of magnetic fields in a transversely expanding highly conductive fluid
Due to the absence of a transverse expansion with respect to the beam direction, the Bjorken flow is unable to describe certain observables in heavy ion collisions. This caveat has motivated the introduction of analytical relativistic hydrodynamics (RH) solutions with transverse expansion, in particular, the 3+1 self-similar (SSF) and Gubser flows. Inspired by recent generalizations of the Bjorken flow to the relativistic magnetohydrodynamics (RMHD), we present a procedure for a generalization of RH solutions to RMHD. Our method is mainly based on symmetry arguments. Using this method, we find the relation between RH degrees of freedom and the magnetic field evolution in the ideal limit for an infinitely conductive fluid, and determine the proper time dependence of the magnetic field in aforementioned flows. In the case of SSF, a family of solutions are found that are related through a certain differential equation. To find the magnetic field evolution in the Gubser flow, we solve RMHD equations for a stationary fluid in a conformally flat $dS^3\times E^1$ spacetime. The result is then Weyl transformed back into the Minkowski spacetime. In this case, the temporal evolution of the magnetic field exhibits a transmission between $1/t$ to $1/t^3$ near the center of the collision. The longitudinal component of the magnetic field is found to be sensitive to the transverse size of the fluid. We also find the radial evolution of the magnetic field for both flows. The radial domain of validity in the case of SSF is highly restricted, in contrast to the Gubser flow. A comparison of the results suggests that the Gubser RMHD may give a more appropriate qualitative picture of the magnetic field decay in the quark-gluon plasma (QGP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fractal structure, power-law distribution and hadron spectrum A Model for Soft and Hard Interactions based on the CGC/Saturation Approach Proper time evolution of magnetic susceptibility in amagnetized plasma of quarks and gluons Transport in Dense Nuclear Matter Higher-order condensate corrections to bottomonium observables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1