用神经密度估计比较神经模拟

Jan Boelts, Jan-Matthis Lueckmann, P. J. Gonçalves, Henning Sprekeler, J. Macke
{"title":"用神经密度估计比较神经模拟","authors":"Jan Boelts, Jan-Matthis Lueckmann, P. J. Gonçalves, Henning Sprekeler, J. Macke","doi":"10.32470/ccn.2019.1291-0","DOIUrl":null,"url":null,"abstract":"A common problem in computational neuroscience is the comparison of competing models in the light of observed data. Bayesian model comparison provides a statistically sound framework for this comparison based on the evidence each model provides for the data. In practice, however, models are often defined through complex simulators so that methods relying on likelihood functions are not applicable. Previous approaches in the field of Approximate Bayesian Computation (ABC) rely on rejection sampling to circumvent the likelihood, but are typically computationally inefficient. We propose an efficient method to perform Bayesian model comparison for simulation-based models. Using recent advances in posterior density estimation, we train a mixture-density network to map features of the observed data to the parameters of the posterior over models. We show that the method performs accurately on two tractable example problems, and present an application to a use case scenario from computational neuroscience – the comparison of ion channel models.","PeriodicalId":281121,"journal":{"name":"2019 Conference on Cognitive Computational Neuroscience","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Comparing neural simulations by neural density estimation\",\"authors\":\"Jan Boelts, Jan-Matthis Lueckmann, P. J. Gonçalves, Henning Sprekeler, J. Macke\",\"doi\":\"10.32470/ccn.2019.1291-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A common problem in computational neuroscience is the comparison of competing models in the light of observed data. Bayesian model comparison provides a statistically sound framework for this comparison based on the evidence each model provides for the data. In practice, however, models are often defined through complex simulators so that methods relying on likelihood functions are not applicable. Previous approaches in the field of Approximate Bayesian Computation (ABC) rely on rejection sampling to circumvent the likelihood, but are typically computationally inefficient. We propose an efficient method to perform Bayesian model comparison for simulation-based models. Using recent advances in posterior density estimation, we train a mixture-density network to map features of the observed data to the parameters of the posterior over models. We show that the method performs accurately on two tractable example problems, and present an application to a use case scenario from computational neuroscience – the comparison of ion channel models.\",\"PeriodicalId\":281121,\"journal\":{\"name\":\"2019 Conference on Cognitive Computational Neuroscience\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 Conference on Cognitive Computational Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32470/ccn.2019.1291-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 Conference on Cognitive Computational Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32470/ccn.2019.1291-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

计算神经科学中的一个常见问题是根据观察到的数据比较相互竞争的模型。基于每个模型为数据提供的证据,贝叶斯模型比较为这种比较提供了一个统计上合理的框架。然而,在实践中,模型通常是通过复杂的模拟器定义的,因此依赖于似然函数的方法是不适用的。在近似贝叶斯计算(ABC)领域,以前的方法依赖于拒绝抽样来规避似然,但通常计算效率低下。我们提出了一种有效的方法来对基于仿真的模型进行贝叶斯模型比较。利用后验密度估计的最新进展,我们训练了一个混合密度网络,将观测数据的特征映射到后验over模型的参数。我们证明了该方法在两个可处理的示例问题上执行准确,并提出了一个应用于计算神经科学的用例场景-离子通道模型的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing neural simulations by neural density estimation
A common problem in computational neuroscience is the comparison of competing models in the light of observed data. Bayesian model comparison provides a statistically sound framework for this comparison based on the evidence each model provides for the data. In practice, however, models are often defined through complex simulators so that methods relying on likelihood functions are not applicable. Previous approaches in the field of Approximate Bayesian Computation (ABC) rely on rejection sampling to circumvent the likelihood, but are typically computationally inefficient. We propose an efficient method to perform Bayesian model comparison for simulation-based models. Using recent advances in posterior density estimation, we train a mixture-density network to map features of the observed data to the parameters of the posterior over models. We show that the method performs accurately on two tractable example problems, and present an application to a use case scenario from computational neuroscience – the comparison of ion channel models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Narratives as Networks: Predicting Memory from the Structure of Naturalistic Events Subtractive gating improves generalization in working memory tasks Do LSTMs know about Principle C? Unfolding of multisensory inference in the brain and behavior Adversarial Training of Neural Encoding Models on Population Spike Trains
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1