分布式机器上的并行循环

C. Koelbel, P. Mehrotra, J. Saltz, H. Berryman
{"title":"分布式机器上的并行循环","authors":"C. Koelbel, P. Mehrotra, J. Saltz, H. Berryman","doi":"10.1109/DMCC.1990.556322","DOIUrl":null,"url":null,"abstract":"Any programming environment for distributed memory machines that allows the user to specify pdwallel do loops over globally defined data structures requires optimizations that go beyond the specification of Lrppropriate data and workload partitionings. In this paper, we consider optimizations that are required for efficient execution of a code segment that consists of pmallel loops over distributed data Structures. On distributed memory machines it is typically very expensive tci fetch individual data elements. Instead, before a parallirl loop executes, it is desirable to prefetch all off-processor data required in the loop. We specify a scheme for s boring copies of fetched data along with a scheme for accessing copies of off-processor data during the computafJ ion of the loop. The performance of such optimizations rm the iPSC/2 and the NCUBE is also presented.","PeriodicalId":204431,"journal":{"name":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1990-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Parallel Loops on Distributed Machines\",\"authors\":\"C. Koelbel, P. Mehrotra, J. Saltz, H. Berryman\",\"doi\":\"10.1109/DMCC.1990.556322\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Any programming environment for distributed memory machines that allows the user to specify pdwallel do loops over globally defined data structures requires optimizations that go beyond the specification of Lrppropriate data and workload partitionings. In this paper, we consider optimizations that are required for efficient execution of a code segment that consists of pmallel loops over distributed data Structures. On distributed memory machines it is typically very expensive tci fetch individual data elements. Instead, before a parallirl loop executes, it is desirable to prefetch all off-processor data required in the loop. We specify a scheme for s boring copies of fetched data along with a scheme for accessing copies of off-processor data during the computafJ ion of the loop. The performance of such optimizations rm the iPSC/2 and the NCUBE is also presented.\",\"PeriodicalId\":204431,\"journal\":{\"name\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1990-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DMCC.1990.556322\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Distributed Memory Computing Conference, 1990.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DMCC.1990.556322","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

任何允许用户在全局定义的数据结构上指定pdwall_do循环的分布式内存机器编程环境,都需要进行超出适当数据和工作负载分区规范的优化。在本文中,我们考虑了有效执行由分布数据结构上的并行循环组成的代码段所需的优化。在分布式内存机器上,获取单个数据元素通常非常昂贵。相反,在并行循环执行之前,最好是预取循环中所需的所有离处理器数据。我们为获取的数据的5个无聊副本指定了一种方案,并为在循环计算期间访问离处理器数据的副本指定了一种方案。本文还介绍了iPSC/2和NCUBE的优化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parallel Loops on Distributed Machines
Any programming environment for distributed memory machines that allows the user to specify pdwallel do loops over globally defined data structures requires optimizations that go beyond the specification of Lrppropriate data and workload partitionings. In this paper, we consider optimizations that are required for efficient execution of a code segment that consists of pmallel loops over distributed data Structures. On distributed memory machines it is typically very expensive tci fetch individual data elements. Instead, before a parallirl loop executes, it is desirable to prefetch all off-processor data required in the loop. We specify a scheme for s boring copies of fetched data along with a scheme for accessing copies of off-processor data during the computafJ ion of the loop. The performance of such optimizations rm the iPSC/2 and the NCUBE is also presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reducing Inner Product Computation in the Parallel One-Sided Jacobi Algorithm Experience with Concurrent Aggregates (CA): Implementation and Programming A Distributed Memory Implementation of SISAL Performance Results on the Intel Touchstone Gamma Prototype Quick Recovery of Embedded Structures in Hypercube Computers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1