分层深度全景

K. Zheng, S. B. Kang, Michael F. Cohen, R. Szeliski
{"title":"分层深度全景","authors":"K. Zheng, S. B. Kang, Michael F. Cohen, R. Szeliski","doi":"10.1109/CVPR.2007.383295","DOIUrl":null,"url":null,"abstract":"Representations for interactive photorealistic visualization of scenes range from compact 2D panoramas to data-intensive 4D light fields. In this paper, we propose a technique for creating a layered representation from a sparse set of images taken with a hand-held camera. This representation, which we call a layered depth panorama (LDP), allows the user to experience 3D by off-axis panning. It combines the compelling experience of panoramas with limited 3D navigation. Our choice of representation is motivated by ease of capture and compactness. We formulate the problem of constructing the LDP as the recovery of color and geometry in a multi-perspective cylindrical disparity space. We leverage a graph cut approach to sequentially determine the disparity and color of each layer using multi-view stereo. Geometry visible through the cracks at depth discontinuities in a frontmost layer is determined and assigned to layers behind the frontmost layer. All layers are then used to render novel panoramic views with parallax. We demonstrate our approach on a variety of complex outdoor and indoor scenes.","PeriodicalId":351008,"journal":{"name":"2007 IEEE Conference on Computer Vision and Pattern Recognition","volume":"147 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":"{\"title\":\"Layered Depth Panoramas\",\"authors\":\"K. Zheng, S. B. Kang, Michael F. Cohen, R. Szeliski\",\"doi\":\"10.1109/CVPR.2007.383295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Representations for interactive photorealistic visualization of scenes range from compact 2D panoramas to data-intensive 4D light fields. In this paper, we propose a technique for creating a layered representation from a sparse set of images taken with a hand-held camera. This representation, which we call a layered depth panorama (LDP), allows the user to experience 3D by off-axis panning. It combines the compelling experience of panoramas with limited 3D navigation. Our choice of representation is motivated by ease of capture and compactness. We formulate the problem of constructing the LDP as the recovery of color and geometry in a multi-perspective cylindrical disparity space. We leverage a graph cut approach to sequentially determine the disparity and color of each layer using multi-view stereo. Geometry visible through the cracks at depth discontinuities in a frontmost layer is determined and assigned to layers behind the frontmost layer. All layers are then used to render novel panoramic views with parallax. We demonstrate our approach on a variety of complex outdoor and indoor scenes.\",\"PeriodicalId\":351008,\"journal\":{\"name\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"147 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"32\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2007.383295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2007.383295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

摘要

交互式逼真场景可视化的表示范围从紧凑的2D全景图到数据密集型的4D光场。在本文中,我们提出了一种从手持相机拍摄的稀疏图像集创建分层表示的技术。这种表示,我们称之为分层深度全景(LDP),允许用户通过离轴平移来体验3D。它结合了令人信服的全景体验和有限的3D导航。我们选择表示法的动机是易于捕获和紧凑性。我们将LDP的构造问题表述为多视角圆柱视差空间中颜色和几何的恢复问题。我们利用图形切割方法来确定使用多视图立体的每一层的视差和颜色。在最前端层的深度不连续处通过裂缝可见的几何形状被确定并分配给最前端层后面的层。所有的图层都用来渲染新颖的视差全景。我们在各种复杂的室外和室内场景中展示了我们的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layered Depth Panoramas
Representations for interactive photorealistic visualization of scenes range from compact 2D panoramas to data-intensive 4D light fields. In this paper, we propose a technique for creating a layered representation from a sparse set of images taken with a hand-held camera. This representation, which we call a layered depth panorama (LDP), allows the user to experience 3D by off-axis panning. It combines the compelling experience of panoramas with limited 3D navigation. Our choice of representation is motivated by ease of capture and compactness. We formulate the problem of constructing the LDP as the recovery of color and geometry in a multi-perspective cylindrical disparity space. We leverage a graph cut approach to sequentially determine the disparity and color of each layer using multi-view stereo. Geometry visible through the cracks at depth discontinuities in a frontmost layer is determined and assigned to layers behind the frontmost layer. All layers are then used to render novel panoramic views with parallax. We demonstrate our approach on a variety of complex outdoor and indoor scenes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Combining Region and Edge Cues for Image Segmentation in a Probabilistic Gaussian Mixture Framework Fast Human Pose Estimation using Appearance and Motion via Multi-Dimensional Boosting Regression Enhanced Level Building Algorithm for the Movement Epenthesis Problem in Sign Language Recognition Change Detection in a 3-d World Layered Graph Match with Graph Editing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1