上下文感知语言模型的评估和专家对软件维护问题的工作量评估

Mohammed Alhamed, Tim Storer
{"title":"上下文感知语言模型的评估和专家对软件维护问题的工作量评估","authors":"Mohammed Alhamed, Tim Storer","doi":"10.1109/ICSME55016.2022.00020","DOIUrl":null,"url":null,"abstract":"Reflecting upon recent advances in Natural Language Processing (NLP), this paper evaluates the effectiveness of context-aware NLP models for predicting software task effort estimates. Term Frequency–Inverse Document Frequency (TF-IDF) and Bidirectional Encoder Representations from Transformers (BERT) were used as feature extraction methods; Random forest and BERT feed-forward linear neural networks were used as classifiers. Using three datasets drawn from open-source projects and one from a commercial project, the paper evaluates the models and compares the best performing model with expert estimates from both kinds of datasets. The results suggest that BERT as feature extraction and classifier shows slightly better performance than other combinations, but that there is no significant difference between the presented methods. On the other hand, the results show that expert and Machine Learning (ML) estimate performances are similar, with the experts’ performance being slightly better. Both findings confirmed existing literature, but using substantially different experimental settings.","PeriodicalId":300084,"journal":{"name":"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of Context-Aware Language Models and Experts for Effort Estimation of Software Maintenance Issues\",\"authors\":\"Mohammed Alhamed, Tim Storer\",\"doi\":\"10.1109/ICSME55016.2022.00020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reflecting upon recent advances in Natural Language Processing (NLP), this paper evaluates the effectiveness of context-aware NLP models for predicting software task effort estimates. Term Frequency–Inverse Document Frequency (TF-IDF) and Bidirectional Encoder Representations from Transformers (BERT) were used as feature extraction methods; Random forest and BERT feed-forward linear neural networks were used as classifiers. Using three datasets drawn from open-source projects and one from a commercial project, the paper evaluates the models and compares the best performing model with expert estimates from both kinds of datasets. The results suggest that BERT as feature extraction and classifier shows slightly better performance than other combinations, but that there is no significant difference between the presented methods. On the other hand, the results show that expert and Machine Learning (ML) estimate performances are similar, with the experts’ performance being slightly better. Both findings confirmed existing literature, but using substantially different experimental settings.\",\"PeriodicalId\":300084,\"journal\":{\"name\":\"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSME55016.2022.00020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Software Maintenance and Evolution (ICSME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSME55016.2022.00020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

回顾自然语言处理(NLP)的最新进展,本文评估了上下文感知的NLP模型在预测软件任务工作量估计方面的有效性。使用词频-逆文档频率(TF-IDF)和双向编码器表示(BERT)作为特征提取方法;采用随机森林和BERT前馈线性神经网络作为分类器。本文使用来自开源项目的三个数据集和一个来自商业项目的数据集,对模型进行评估,并将表现最佳的模型与来自两种数据集的专家估计进行比较。结果表明,BERT作为特征提取和分类器的性能略好于其他组合,但两种方法之间没有显著差异。另一方面,结果表明专家和机器学习(ML)的估计性能相似,专家的性能略好。这两项发现都证实了现有文献,但采用了截然不同的实验环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Context-Aware Language Models and Experts for Effort Estimation of Software Maintenance Issues
Reflecting upon recent advances in Natural Language Processing (NLP), this paper evaluates the effectiveness of context-aware NLP models for predicting software task effort estimates. Term Frequency–Inverse Document Frequency (TF-IDF) and Bidirectional Encoder Representations from Transformers (BERT) were used as feature extraction methods; Random forest and BERT feed-forward linear neural networks were used as classifiers. Using three datasets drawn from open-source projects and one from a commercial project, the paper evaluates the models and compares the best performing model with expert estimates from both kinds of datasets. The results suggest that BERT as feature extraction and classifier shows slightly better performance than other combinations, but that there is no significant difference between the presented methods. On the other hand, the results show that expert and Machine Learning (ML) estimate performances are similar, with the experts’ performance being slightly better. Both findings confirmed existing literature, but using substantially different experimental settings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
RestTestGen: An Extensible Framework for Automated Black-box Testing of RESTful APIs COBREX: A Tool for Extracting Business Rules from COBOL On the Security of Python Virtual Machines: An Empirical Study The Phantom Menace: Unmasking Security Issues in Evolving Software Impact of Defect Instances for Successful Deep Learning-based Automatic Program Repair
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1