Kaoutar Elkhiyaoui, Melek Önen, Monir Azraoui, R. Molva
{"title":"公开可验证的计算委托的有效技术","authors":"Kaoutar Elkhiyaoui, Melek Önen, Monir Azraoui, R. Molva","doi":"10.1145/2897845.2897910","DOIUrl":null,"url":null,"abstract":"With the advent of cloud computing, individuals and companies alike are looking for opportunities to leverage cloud resources not only for storage but also for computation. Nevertheless, the reliance on the cloud to perform computation raises the unavoidable challenge of how to assure the correctness of the delegated computation. In this regard, we introduce two cryptographic protocols for publicly verifiable computation that allow a lightweight client to securely outsource to a cloud server the evaluation of high-degree univariate polynomials and the multiplication of large matrices. Similarly to existing work, our protocols follow the amortized verifiable computation approach. Furthermore, by exploiting the mathematical properties of polynomials and matrices, they are more efficient and give way to public delegatability. Finally, besides their efficiency, our protocols are provably secure under well-studied assumptions.","PeriodicalId":166633,"journal":{"name":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"Efficient Techniques for Publicly Verifiable Delegation of Computation\",\"authors\":\"Kaoutar Elkhiyaoui, Melek Önen, Monir Azraoui, R. Molva\",\"doi\":\"10.1145/2897845.2897910\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of cloud computing, individuals and companies alike are looking for opportunities to leverage cloud resources not only for storage but also for computation. Nevertheless, the reliance on the cloud to perform computation raises the unavoidable challenge of how to assure the correctness of the delegated computation. In this regard, we introduce two cryptographic protocols for publicly verifiable computation that allow a lightweight client to securely outsource to a cloud server the evaluation of high-degree univariate polynomials and the multiplication of large matrices. Similarly to existing work, our protocols follow the amortized verifiable computation approach. Furthermore, by exploiting the mathematical properties of polynomials and matrices, they are more efficient and give way to public delegatability. Finally, besides their efficiency, our protocols are provably secure under well-studied assumptions.\",\"PeriodicalId\":166633,\"journal\":{\"name\":\"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2897845.2897910\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 11th ACM on Asia Conference on Computer and Communications Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2897845.2897910","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Efficient Techniques for Publicly Verifiable Delegation of Computation
With the advent of cloud computing, individuals and companies alike are looking for opportunities to leverage cloud resources not only for storage but also for computation. Nevertheless, the reliance on the cloud to perform computation raises the unavoidable challenge of how to assure the correctness of the delegated computation. In this regard, we introduce two cryptographic protocols for publicly verifiable computation that allow a lightweight client to securely outsource to a cloud server the evaluation of high-degree univariate polynomials and the multiplication of large matrices. Similarly to existing work, our protocols follow the amortized verifiable computation approach. Furthermore, by exploiting the mathematical properties of polynomials and matrices, they are more efficient and give way to public delegatability. Finally, besides their efficiency, our protocols are provably secure under well-studied assumptions.