胎儿心电信号检测胎儿心律失常

M. S. R. Pavel, Md. Rafi Islam, Asif Mohammed Siddiqee
{"title":"胎儿心电信号检测胎儿心律失常","authors":"M. S. R. Pavel, Md. Rafi Islam, Asif Mohammed Siddiqee","doi":"10.1109/ICTP48844.2019.9041789","DOIUrl":null,"url":null,"abstract":"Sudden infant death syndrome (SIDS) has remained a challenge to overcome for the medical practitioner. Among other causes, the fetal arrhythmia is accountable for a significant portion of such cases. Any heart rate of a baby above 160 bpm or below 120 bpm refers to fetal arrhythmia. In comparison with various diagnostic methodology, ECG is a low-cost non-invasive method which measures the electrical activity of the heart. Thus, to detect fetal arrhythmia, we developed an ECG signal feature extracting algorithm and extracted eight significant features of the fetal ECG signal. Based on these features, Kernel Support Vector Machine (SVM) classifier with Gaussian Kernel was utilised to detect fetal arrhythmia. For evaluating the learning model, we used the leave one out (LOO) cross-validation. The final result displayed accuracy of 83.33% with 91.67% specificity and 75% sensitivity. Thus, this research shows a way of developing a unique non-invasive and low-cost fetal arrhythmia diagnosis method.","PeriodicalId":127575,"journal":{"name":"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fetal Arrhythmia Detection Using Fetal ECG Signal\",\"authors\":\"M. S. R. Pavel, Md. Rafi Islam, Asif Mohammed Siddiqee\",\"doi\":\"10.1109/ICTP48844.2019.9041789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sudden infant death syndrome (SIDS) has remained a challenge to overcome for the medical practitioner. Among other causes, the fetal arrhythmia is accountable for a significant portion of such cases. Any heart rate of a baby above 160 bpm or below 120 bpm refers to fetal arrhythmia. In comparison with various diagnostic methodology, ECG is a low-cost non-invasive method which measures the electrical activity of the heart. Thus, to detect fetal arrhythmia, we developed an ECG signal feature extracting algorithm and extracted eight significant features of the fetal ECG signal. Based on these features, Kernel Support Vector Machine (SVM) classifier with Gaussian Kernel was utilised to detect fetal arrhythmia. For evaluating the learning model, we used the leave one out (LOO) cross-validation. The final result displayed accuracy of 83.33% with 91.67% specificity and 75% sensitivity. Thus, this research shows a way of developing a unique non-invasive and low-cost fetal arrhythmia diagnosis method.\",\"PeriodicalId\":127575,\"journal\":{\"name\":\"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTP48844.2019.9041789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Telecommunications and Photonics (ICTP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTP48844.2019.9041789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

婴儿猝死综合症(SIDS)仍然是医疗从业者需要克服的挑战。在其他原因中,胎儿心律失常占这类病例的很大一部分。婴儿的心率高于每分钟160次或低于每分钟120次是指胎儿心律失常。与各种诊断方法相比,心电图是一种低成本、无创的测量心脏电活动的方法。因此,为了检测胎儿心律失常,我们开发了一种心电信号特征提取算法,提取了胎儿心电信号的8个显著特征。基于这些特征,采用高斯核支持向量机分类器对胎儿心律失常进行检测。为了评估学习模型,我们使用了留一交叉验证(LOO)。最终结果显示准确率为83.33%,特异性为91.67%,敏感性为75%。因此,本研究为开发一种独特的无创、低成本的胎儿心律失常诊断方法提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fetal Arrhythmia Detection Using Fetal ECG Signal
Sudden infant death syndrome (SIDS) has remained a challenge to overcome for the medical practitioner. Among other causes, the fetal arrhythmia is accountable for a significant portion of such cases. Any heart rate of a baby above 160 bpm or below 120 bpm refers to fetal arrhythmia. In comparison with various diagnostic methodology, ECG is a low-cost non-invasive method which measures the electrical activity of the heart. Thus, to detect fetal arrhythmia, we developed an ECG signal feature extracting algorithm and extracted eight significant features of the fetal ECG signal. Based on these features, Kernel Support Vector Machine (SVM) classifier with Gaussian Kernel was utilised to detect fetal arrhythmia. For evaluating the learning model, we used the leave one out (LOO) cross-validation. The final result displayed accuracy of 83.33% with 91.67% specificity and 75% sensitivity. Thus, this research shows a way of developing a unique non-invasive and low-cost fetal arrhythmia diagnosis method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Analysis and Comparison of Silicon and Silica Nanowire Based Biochemical Sensors Sensitivity Enhanced Surface Plasmon Resonance (SPR) Sensors with MoS2/Graphene Hybrid Overlayer Hollow-core Photonic Crystal Fiber Sensor for Refractive Index Sensing Fetal Arrhythmia Detection Using Fetal ECG Signal Performance Analysis of an OFDM Optical DQPSK FSO Link considering Strong Atmospheric Turbulence with Pointing Error
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1