基于时间声音的智能家居用户界面

K. Tani, Nobuyuki Umezu
{"title":"基于时间声音的智能家居用户界面","authors":"K. Tani, Nobuyuki Umezu","doi":"10.5121/csit.2021.112107","DOIUrl":null,"url":null,"abstract":"We propose a gesture-based interface to control a smart home. Our system replaces existing physical controls with our temporal sound commands using accelerometer. In our preliminary experiments, we recorded the sounds generated by six different gestures (knocking the desk, mouse clicking, and clapping) and converted them into spectrogram images. Classification learning was performed on these images using a CNN. Due to the difference between the microphones used, the classification results are not successful for most of the data. We then recorded acceleration values, instead of sounds, using a smart watch. 5 types of motions were performed in our experiments to execute activity classification on these acceleration data using a machine learning library named Core ML provided by Apple Inc.. These results still have much room to be improved.","PeriodicalId":190330,"journal":{"name":"Web, Internet Engineering & Signal Processing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temporal-Sound based User Interface for Smart Home\",\"authors\":\"K. Tani, Nobuyuki Umezu\",\"doi\":\"10.5121/csit.2021.112107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a gesture-based interface to control a smart home. Our system replaces existing physical controls with our temporal sound commands using accelerometer. In our preliminary experiments, we recorded the sounds generated by six different gestures (knocking the desk, mouse clicking, and clapping) and converted them into spectrogram images. Classification learning was performed on these images using a CNN. Due to the difference between the microphones used, the classification results are not successful for most of the data. We then recorded acceleration values, instead of sounds, using a smart watch. 5 types of motions were performed in our experiments to execute activity classification on these acceleration data using a machine learning library named Core ML provided by Apple Inc.. These results still have much room to be improved.\",\"PeriodicalId\":190330,\"journal\":{\"name\":\"Web, Internet Engineering & Signal Processing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Web, Internet Engineering & Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2021.112107\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Web, Internet Engineering & Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2021.112107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一个基于手势的界面来控制智能家居。我们的系统用使用加速度计的时间声音命令取代了现有的物理控制。在我们的初步实验中,我们记录了六种不同手势(敲桌子、点击鼠标和鼓掌)产生的声音,并将它们转换成光谱图图像。使用CNN对这些图像进行分类学习。由于所用麦克风之间的差异,大多数数据的分类结果都不成功。然后我们用智能手表记录加速度值,而不是声音。在我们的实验中,我们使用苹果公司提供的名为Core ML的机器学习库对这些加速数据进行了5种类型的动作分类。这些结果仍有很大的改进空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Temporal-Sound based User Interface for Smart Home
We propose a gesture-based interface to control a smart home. Our system replaces existing physical controls with our temporal sound commands using accelerometer. In our preliminary experiments, we recorded the sounds generated by six different gestures (knocking the desk, mouse clicking, and clapping) and converted them into spectrogram images. Classification learning was performed on these images using a CNN. Due to the difference between the microphones used, the classification results are not successful for most of the data. We then recorded acceleration values, instead of sounds, using a smart watch. 5 types of motions were performed in our experiments to execute activity classification on these acceleration data using a machine learning library named Core ML provided by Apple Inc.. These results still have much room to be improved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Study of the Classification of Motor Imagery Signals using Machine Learning Tools Thermal Comfort of the Environment with Internet of Things, Big Data and Machine Learning Temporal-Sound based User Interface for Smart Home Small Delay Tracing Defect Testing Multimodal Data Evaluation for Classification Problems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1