基于启发式的自适应电子商务推荐系统

Elmar P. Wach
{"title":"基于启发式的自适应电子商务推荐系统","authors":"Elmar P. Wach","doi":"10.1109/ISDA.2012.6416573","DOIUrl":null,"url":null,"abstract":"The research described in this paper proposes an evolution heuristic for realising an adaptive semantic e-commerce recommender system by establishing a feedback cycle. This recommender extracts questions from product domain ontologies (PDO) which are used in the dialogue of the recommendation process. The heuristic decides an automated PDO evolution (without a human inspection) in order to realise an automatic adaptation of the recommendation process. The feedback is derived from user interactions with the user interface of the recommender. This research shows that the automated PDO evolution outperforms a manual one. The evolution heuristic has been evaluated with an experiment and validated in real-world testing series.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A heuristic as basis for an adaptive e-commerce recommender system\",\"authors\":\"Elmar P. Wach\",\"doi\":\"10.1109/ISDA.2012.6416573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The research described in this paper proposes an evolution heuristic for realising an adaptive semantic e-commerce recommender system by establishing a feedback cycle. This recommender extracts questions from product domain ontologies (PDO) which are used in the dialogue of the recommendation process. The heuristic decides an automated PDO evolution (without a human inspection) in order to realise an automatic adaptation of the recommendation process. The feedback is derived from user interactions with the user interface of the recommender. This research shows that the automated PDO evolution outperforms a manual one. The evolution heuristic has been evaluated with an experiment and validated in real-world testing series.\",\"PeriodicalId\":370150,\"journal\":{\"name\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISDA.2012.6416573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种进化启发式算法,通过建立反馈循环来实现自适应语义电子商务推荐系统。该推荐器从产品领域本体(PDO)中提取问题,这些问题用于推荐过程的对话。启发式算法决定一个自动的PDO进化(不需要人工检查),以实现推荐过程的自动适应。反馈来自于用户与推荐器用户界面的交互。该研究表明,自动PDO进化优于手动PDO进化。进化启发式已通过实验进行了评估,并在实际测试系列中得到了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A heuristic as basis for an adaptive e-commerce recommender system
The research described in this paper proposes an evolution heuristic for realising an adaptive semantic e-commerce recommender system by establishing a feedback cycle. This recommender extracts questions from product domain ontologies (PDO) which are used in the dialogue of the recommendation process. The heuristic decides an automated PDO evolution (without a human inspection) in order to realise an automatic adaptation of the recommendation process. The feedback is derived from user interactions with the user interface of the recommender. This research shows that the automated PDO evolution outperforms a manual one. The evolution heuristic has been evaluated with an experiment and validated in real-world testing series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1