数据挖掘在医疗数据中的应用,重点关注儿童事故死亡率

M.H. Saraee, Z. Ehghaghi, Hoda Meamarzadeh, B. Zibanezhad
{"title":"数据挖掘在医疗数据中的应用,重点关注儿童事故死亡率","authors":"M.H. Saraee, Z. Ehghaghi, Hoda Meamarzadeh, B. Zibanezhad","doi":"10.1109/INMIC.2008.4777728","DOIUrl":null,"url":null,"abstract":"Trauma is the main leading cause of death in children; we need a tool to prevent and predict the outcome in these patients. Data mining is the science of extracting the useful information from a large amount of data sets or databases that leads to statistical and logical analysis and looking for patterns that could help the decision makers. In This paper we offer an approach for using data mining in classifying mortality rate related to accidents in children under 15. These data were gathered from the patient files which were recorded in the medical record section of the Alzahra Hospital in Isfahan. The data mining methods in use are decision tree and Bayes' theorem. Applying DM techniques to the data brings about very interesting and valuable results. It is concluded that in this case, comparing the result of evaluating the models on test set, decision tree works better than Bayes' theorem. In this paper, we have used Clementine12.0 for creating the models.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Applying data mining in medical data with focus on mortality related to accident in children\",\"authors\":\"M.H. Saraee, Z. Ehghaghi, Hoda Meamarzadeh, B. Zibanezhad\",\"doi\":\"10.1109/INMIC.2008.4777728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Trauma is the main leading cause of death in children; we need a tool to prevent and predict the outcome in these patients. Data mining is the science of extracting the useful information from a large amount of data sets or databases that leads to statistical and logical analysis and looking for patterns that could help the decision makers. In This paper we offer an approach for using data mining in classifying mortality rate related to accidents in children under 15. These data were gathered from the patient files which were recorded in the medical record section of the Alzahra Hospital in Isfahan. The data mining methods in use are decision tree and Bayes' theorem. Applying DM techniques to the data brings about very interesting and valuable results. It is concluded that in this case, comparing the result of evaluating the models on test set, decision tree works better than Bayes' theorem. In this paper, we have used Clementine12.0 for creating the models.\",\"PeriodicalId\":112530,\"journal\":{\"name\":\"2008 IEEE International Multitopic Conference\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Multitopic Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INMIC.2008.4777728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

创伤是儿童死亡的主要原因;我们需要一种工具来预防和预测这些患者的结果。数据挖掘是从大量数据集或数据库中提取有用信息的科学,从而进行统计和逻辑分析,并寻找可以帮助决策者的模式。本文提出了一种利用数据挖掘对15岁以下儿童事故死亡率进行分类的方法。这些数据是从记录在伊斯法罕Alzahra医院病历科的病人档案中收集的。使用的数据挖掘方法是决策树和贝叶斯定理。将数据挖掘技术应用到数据中会带来非常有趣和有价值的结果。通过对模型在测试集上的评价结果进行比较,得出决策树优于贝叶斯定理的结论。在本文中,我们使用Clementine12.0来创建模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Applying data mining in medical data with focus on mortality related to accident in children
Trauma is the main leading cause of death in children; we need a tool to prevent and predict the outcome in these patients. Data mining is the science of extracting the useful information from a large amount of data sets or databases that leads to statistical and logical analysis and looking for patterns that could help the decision makers. In This paper we offer an approach for using data mining in classifying mortality rate related to accidents in children under 15. These data were gathered from the patient files which were recorded in the medical record section of the Alzahra Hospital in Isfahan. The data mining methods in use are decision tree and Bayes' theorem. Applying DM techniques to the data brings about very interesting and valuable results. It is concluded that in this case, comparing the result of evaluating the models on test set, decision tree works better than Bayes' theorem. In this paper, we have used Clementine12.0 for creating the models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impact of nano particles on semiconductor manufacturing Graphical modeling and optimization of air interface standards for Software Defined Radios Per Packet Authentication for IEEE 802.11 wireless LAN An intelligent agri-information dissemination framework: An e-Government Characterization of waveguide slots using full wave EM analysis software HFSS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1