PredriveID:从车载数据中获取的出行前驾驶员识别

Gorkem Kar, Shubham Jain, M. Gruteser, Jinzhu Chen, F. Bai, R. Govindan
{"title":"PredriveID:从车载数据中获取的出行前驾驶员识别","authors":"Gorkem Kar, Shubham Jain, M. Gruteser, Jinzhu Chen, F. Bai, R. Govindan","doi":"10.1145/3132211.3134462","DOIUrl":null,"url":null,"abstract":"This paper explores the minimal dataset necessary at vehicular edge nodes, to effectively differentiate drivers using data from existing in-vehicle sensors. This facilitates novel personalization, insurance, advertising, and security applications but can also help in understanding the privacy sensitivity of such data. Existing work on differentiating drivers largely relies on devices that drivers carry, or on the locations that drivers visit to distinguish drivers. Internally, however, the vehicle processes a much richer set of sensor information that is becoming increasingly available to external services. To explore how easily drivers can be distinguished from such data, we consider a system that interfaces to the vehicle bus and executes supervised or unsupervised driver differentiation techniques on this data. To facilitate this analysis and to evaluate the system, we collect in-vehicle data from 24 drivers on a controlled campus test route, as well as 480 trips over three weeks from five shared university mail vans. We also conduct studies between members of a family. The results show that driver differentiation does not require longer sequences of driving telemetry data but can be accomplished with 91% accuracy within 20s after the driver enters the vehicle, usually even before the vehicle starts moving.","PeriodicalId":389022,"journal":{"name":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","volume":"241 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"PredriveID: pre-trip driver identification from in-vehicle data\",\"authors\":\"Gorkem Kar, Shubham Jain, M. Gruteser, Jinzhu Chen, F. Bai, R. Govindan\",\"doi\":\"10.1145/3132211.3134462\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explores the minimal dataset necessary at vehicular edge nodes, to effectively differentiate drivers using data from existing in-vehicle sensors. This facilitates novel personalization, insurance, advertising, and security applications but can also help in understanding the privacy sensitivity of such data. Existing work on differentiating drivers largely relies on devices that drivers carry, or on the locations that drivers visit to distinguish drivers. Internally, however, the vehicle processes a much richer set of sensor information that is becoming increasingly available to external services. To explore how easily drivers can be distinguished from such data, we consider a system that interfaces to the vehicle bus and executes supervised or unsupervised driver differentiation techniques on this data. To facilitate this analysis and to evaluate the system, we collect in-vehicle data from 24 drivers on a controlled campus test route, as well as 480 trips over three weeks from five shared university mail vans. We also conduct studies between members of a family. The results show that driver differentiation does not require longer sequences of driving telemetry data but can be accomplished with 91% accuracy within 20s after the driver enters the vehicle, usually even before the vehicle starts moving.\",\"PeriodicalId\":389022,\"journal\":{\"name\":\"Proceedings of the Second ACM/IEEE Symposium on Edge Computing\",\"volume\":\"241 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second ACM/IEEE Symposium on Edge Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132211.3134462\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second ACM/IEEE Symposium on Edge Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132211.3134462","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文探讨了车辆边缘节点所需的最小数据集,以便使用现有车载传感器的数据有效区分驾驶员。这有利于新颖的个性化、保险、广告和安全应用程序,但也有助于理解此类数据的隐私敏感性。现有的区分司机的工作很大程度上依赖于司机携带的设备,或者司机去的地方来区分司机。然而,车辆内部处理的传感器信息更加丰富,这些信息越来越多地可供外部服务使用。为了探索如何容易地从这些数据中区分驾驶员,我们考虑了一个系统,该系统与车辆总线接口,并对这些数据执行监督或无监督驾驶员区分技术。为了便于分析和评估该系统,我们从一条受控的校园测试路线上的24名司机那里收集了车内数据,以及五辆共享的大学邮车在三周内的480次旅行。我们也在家庭成员之间进行研究。结果表明,驾驶员识别不需要更长的驾驶遥测数据序列,在驾驶员进入车辆后的20秒内,通常甚至在车辆开始移动之前,就可以以91%的准确率完成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PredriveID: pre-trip driver identification from in-vehicle data
This paper explores the minimal dataset necessary at vehicular edge nodes, to effectively differentiate drivers using data from existing in-vehicle sensors. This facilitates novel personalization, insurance, advertising, and security applications but can also help in understanding the privacy sensitivity of such data. Existing work on differentiating drivers largely relies on devices that drivers carry, or on the locations that drivers visit to distinguish drivers. Internally, however, the vehicle processes a much richer set of sensor information that is becoming increasingly available to external services. To explore how easily drivers can be distinguished from such data, we consider a system that interfaces to the vehicle bus and executes supervised or unsupervised driver differentiation techniques on this data. To facilitate this analysis and to evaluate the system, we collect in-vehicle data from 24 drivers on a controlled campus test route, as well as 480 trips over three weeks from five shared university mail vans. We also conduct studies between members of a family. The results show that driver differentiation does not require longer sequences of driving telemetry data but can be accomplished with 91% accuracy within 20s after the driver enters the vehicle, usually even before the vehicle starts moving.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High speed object tracking using edge computing: poster abstract Parkmaster: an in-vehicle, edge-based video analytics service for detecting open parking spaces in urban environments PredriveID: pre-trip driver identification from in-vehicle data Privacy-preserving of platoon-based V2V in collaborative edge: poster abstract Fast and accurate object analysis at the edge for mobile augmented reality: demo
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1