用模拟到真实验证的场景程序查询标记数据

Edward Kim, Jay Shenoy, Sebastian Junges, Daniel J. Fremont, A. Sangiovanni-Vincentelli, S. Seshia
{"title":"用模拟到真实验证的场景程序查询标记数据","authors":"Edward Kim, Jay Shenoy, Sebastian Junges, Daniel J. Fremont, A. Sangiovanni-Vincentelli, S. Seshia","doi":"10.1109/iccps54341.2022.00010","DOIUrl":null,"url":null,"abstract":"Simulation-based testing of autonomous vehicles (AVs) has become an essential complement to road testing to ensure safety. Conse-quently, substantial research has focused on searching for failure scenarios in simulation. However, a fundamental question remains: are AV failure scenarios identified in simulation meaningful in re-ality - i.e., are they reproducible on the real system? Due to the sim-to-real gap arising from discrepancies between simulated and real sensor data, a failure scenario identified in simulation can be either a spurious artifact of the synthetic sensor data or an actual failure that persists with real sensor data. An approach to validate simulated failure scenarios is to identify instances of the scenario in a corpus of real data, and check if the failure persists on the real data. To this end, we propose a formal definition of what it means for a labelled data item to match an abstract scenario, encoded as a scenario program using the Scenic probabilistic programming language. Using this definition, we develop a querying algorithm which, given a scenario program and a labelled dataset, finds the subset of data matching the scenario. Experiments demonstrate that our algorithm is accurate and efficient on a variety of realistic traffic scenarios, and scales to a reasonable number of agents.","PeriodicalId":340078,"journal":{"name":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Querying Labelled Data with Scenario Programs for Sim-to-Real Validation\",\"authors\":\"Edward Kim, Jay Shenoy, Sebastian Junges, Daniel J. Fremont, A. Sangiovanni-Vincentelli, S. Seshia\",\"doi\":\"10.1109/iccps54341.2022.00010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulation-based testing of autonomous vehicles (AVs) has become an essential complement to road testing to ensure safety. Conse-quently, substantial research has focused on searching for failure scenarios in simulation. However, a fundamental question remains: are AV failure scenarios identified in simulation meaningful in re-ality - i.e., are they reproducible on the real system? Due to the sim-to-real gap arising from discrepancies between simulated and real sensor data, a failure scenario identified in simulation can be either a spurious artifact of the synthetic sensor data or an actual failure that persists with real sensor data. An approach to validate simulated failure scenarios is to identify instances of the scenario in a corpus of real data, and check if the failure persists on the real data. To this end, we propose a formal definition of what it means for a labelled data item to match an abstract scenario, encoded as a scenario program using the Scenic probabilistic programming language. Using this definition, we develop a querying algorithm which, given a scenario program and a labelled dataset, finds the subset of data matching the scenario. Experiments demonstrate that our algorithm is accurate and efficient on a variety of realistic traffic scenarios, and scales to a reasonable number of agents.\",\"PeriodicalId\":340078,\"journal\":{\"name\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/iccps54341.2022.00010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 ACM/IEEE 13th International Conference on Cyber-Physical Systems (ICCPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccps54341.2022.00010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

基于仿真的自动驾驶汽车测试已经成为道路测试的重要补充,以确保安全。因此,大量的研究集中在寻找仿真中的失效场景上。然而,一个基本的问题仍然存在:在模拟中识别的自动驾驶故障场景在现实中有意义吗?也就是说,它们在真实系统上是否可重现?由于模拟和真实传感器数据之间的差异导致模拟到真实的差距,在模拟中识别的故障场景可能是合成传感器数据的虚假工件,也可能是真实传感器数据持续存在的实际故障。验证模拟故障场景的一种方法是在真实数据语料库中识别场景的实例,并检查故障是否在真实数据上持续存在。为此,我们提出了一个正式的定义,即标记的数据项与抽象场景相匹配意味着什么,使用Scenic概率编程语言将其编码为场景程序。使用这个定义,我们开发了一个查询算法,该算法给定一个场景程序和一个标记的数据集,找到与场景匹配的数据子集。实验表明,我们的算法在各种现实交通场景下是准确和高效的,并且可以扩展到合理数量的智能体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Querying Labelled Data with Scenario Programs for Sim-to-Real Validation
Simulation-based testing of autonomous vehicles (AVs) has become an essential complement to road testing to ensure safety. Conse-quently, substantial research has focused on searching for failure scenarios in simulation. However, a fundamental question remains: are AV failure scenarios identified in simulation meaningful in re-ality - i.e., are they reproducible on the real system? Due to the sim-to-real gap arising from discrepancies between simulated and real sensor data, a failure scenario identified in simulation can be either a spurious artifact of the synthetic sensor data or an actual failure that persists with real sensor data. An approach to validate simulated failure scenarios is to identify instances of the scenario in a corpus of real data, and check if the failure persists on the real data. To this end, we propose a formal definition of what it means for a labelled data item to match an abstract scenario, encoded as a scenario program using the Scenic probabilistic programming language. Using this definition, we develop a querying algorithm which, given a scenario program and a labelled dataset, finds the subset of data matching the scenario. Experiments demonstrate that our algorithm is accurate and efficient on a variety of realistic traffic scenarios, and scales to a reasonable number of agents.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poster Abstract: Scheduling Dynamic Software Updates in Safety-critical Embedded Systems - the Case of Aerial Drones Multi-fidelity Bayesian Optimization for Co-design of Resilient Cyber-Physical Systems Decentralized Multi-agent Coordination under MITL Tasks and Communication Constraints Safety from Fast, In-the-Loop Reachability with Application to UAVs Blind Spots of Objective Measures: Exploiting Imperceivable Errors for Immersive Tactile Internet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1