使用Moodle活动日志数据的聚类和关联分析可视化

Andri Reimondo Tamba, Krista Lumbantoruan, A. Pakpahan, S. Situmeang
{"title":"使用Moodle活动日志数据的聚类和关联分析可视化","authors":"Andri Reimondo Tamba, Krista Lumbantoruan, A. Pakpahan, S. Situmeang","doi":"10.11591/ijict.v12i2.pp150-161","DOIUrl":null,"url":null,"abstract":"The course activity log is where a learning management system (LMS) like Moodle keeps track of the various learning activities. In order to conduct a quicker and more in-depth examination of the students' behaviors, the instructor may either directly examine the log or make use of more complex methodologies such as data mining. The majority of the proposed methods for analyzing this log data center mostly on predictive analysis. In this research, cluster analysis and association analysis, two separate data mining functions, are investigated in order to analyze the log. The students' activities are used in the cluster analysis performed with K-Means++, and the association analysis performed with Apriori is used to investigate the connections between the students' various activities. A dashboard presentation of the findings is provided in order to facilitate clearer comprehension. Based on the findings of the analysis, it can be concluded that the structure of the student cluster is medium, whereas the association between the activities undertaken by students is positively correlated and well-balanced. The subjective review of the dashboard reveals that the visualization is already sufficient, but there are some recommendations for making it even better.","PeriodicalId":245958,"journal":{"name":"International Journal of Informatics and Communication Technology (IJ-ICT)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A cluster and association analysis visualization using Moodle activity log data\",\"authors\":\"Andri Reimondo Tamba, Krista Lumbantoruan, A. Pakpahan, S. Situmeang\",\"doi\":\"10.11591/ijict.v12i2.pp150-161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The course activity log is where a learning management system (LMS) like Moodle keeps track of the various learning activities. In order to conduct a quicker and more in-depth examination of the students' behaviors, the instructor may either directly examine the log or make use of more complex methodologies such as data mining. The majority of the proposed methods for analyzing this log data center mostly on predictive analysis. In this research, cluster analysis and association analysis, two separate data mining functions, are investigated in order to analyze the log. The students' activities are used in the cluster analysis performed with K-Means++, and the association analysis performed with Apriori is used to investigate the connections between the students' various activities. A dashboard presentation of the findings is provided in order to facilitate clearer comprehension. Based on the findings of the analysis, it can be concluded that the structure of the student cluster is medium, whereas the association between the activities undertaken by students is positively correlated and well-balanced. The subjective review of the dashboard reveals that the visualization is already sufficient, but there are some recommendations for making it even better.\",\"PeriodicalId\":245958,\"journal\":{\"name\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Informatics and Communication Technology (IJ-ICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijict.v12i2.pp150-161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Informatics and Communication Technology (IJ-ICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijict.v12i2.pp150-161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

课程活动日志是像Moodle这样的学习管理系统(LMS)跟踪各种学习活动的地方。为了对学生的行为进行更快、更深入的检查,教师可以直接检查日志,也可以使用更复杂的方法,如数据挖掘。目前提出的分析这种测井数据中心的方法大多以预测分析为主。在本研究中,研究了聚类分析和关联分析这两个独立的数据挖掘功能,以便对日志进行分析。使用k - means++进行聚类分析时使用学生的活动,使用Apriori进行关联分析时使用学生各种活动之间的联系。为了便于更清晰地理解,提供了一个显示结果的仪表板。根据分析结果,可以得出学生群体的结构是中等的,而学生所从事的活动之间的关联是正相关的,并且是平衡的。对仪表板的主观评价表明,可视化已经足够了,但是有一些建议可以使它更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A cluster and association analysis visualization using Moodle activity log data
The course activity log is where a learning management system (LMS) like Moodle keeps track of the various learning activities. In order to conduct a quicker and more in-depth examination of the students' behaviors, the instructor may either directly examine the log or make use of more complex methodologies such as data mining. The majority of the proposed methods for analyzing this log data center mostly on predictive analysis. In this research, cluster analysis and association analysis, two separate data mining functions, are investigated in order to analyze the log. The students' activities are used in the cluster analysis performed with K-Means++, and the association analysis performed with Apriori is used to investigate the connections between the students' various activities. A dashboard presentation of the findings is provided in order to facilitate clearer comprehension. Based on the findings of the analysis, it can be concluded that the structure of the student cluster is medium, whereas the association between the activities undertaken by students is positively correlated and well-balanced. The subjective review of the dashboard reveals that the visualization is already sufficient, but there are some recommendations for making it even better.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Review-based analysis of clustering approaches in a recommendation system Adaptive resource allocation in NOMA-enabled backscatter communications systems Navigating the cyber forensics landscape a review of recent innovations ChatGPT's effect on the job market: how automation affects employment in sectors using ChatGPT for customer service Predicting anomalies in computer networks using autoencoder-based representation learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1