基于噪声心电图信号调制频谱处理的改进心率变异性测量

Diana P. Tobón, Srinivasan Jayaraman, T. Falk
{"title":"基于噪声心电图信号调制频谱处理的改进心率变异性测量","authors":"Diana P. Tobón, Srinivasan Jayaraman, T. Falk","doi":"10.1109/BSN.2017.7936005","DOIUrl":null,"url":null,"abstract":"Wearable device usage is burgeoning, with representative applications ranging from patient/athelete monitoring to stress/fatigue identification to the so-called quantified self movement. Typically, cardiac information is monitored via electrocardiograms (ECG) and information such as heart rate (HR) and heart rate variability (HRV) are used as key health-related metrics. With many wearable devices, however, lower quality sensors are used, thus resulting in devices that are highly sensible to artifacts due to e.g., user's movement. The introduced artifacts hamper HR/HRV analyses, thus ECG enhancement has been the focus of recent research. Existing enhancement algorithms, however, do not perform well in very noisy conditions, as well as add additional computational processing to already battery-hungry wearable applications. Here, we propose to overcome these limitations by describing a new ECG signal representation called the modulation spectrum. By quantifying the rate-of-change of ECG spectral components, signal and artifactual components become separable, thus allowing for accurate HR and HRV measurement from the noisy signal, even in very extreme conditions typically seen in athletic performance training. The proposed MD-HRV (modulation-domain HRV) metric is tested with noise-corrupted synthetic ECG signals and is compared to ‘true’ HRV values obtained from the clean signals. Experimental results show the proposed metric significantly outperforming conventional HRV indices computed on both the noisy, as well as enhanced ECG signals processed by a state-of-the-art wavelet-based algorithm. The obtained findings suggest that the proposed metric is well suited for wearable applications, particularly those involved with intense movement (e.g., in elite athletic training).","PeriodicalId":249670,"journal":{"name":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","volume":"170 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Improved heart rate variability measurement based on modulation spectral processing of noisy electrocardiogram signals\",\"authors\":\"Diana P. Tobón, Srinivasan Jayaraman, T. Falk\",\"doi\":\"10.1109/BSN.2017.7936005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wearable device usage is burgeoning, with representative applications ranging from patient/athelete monitoring to stress/fatigue identification to the so-called quantified self movement. Typically, cardiac information is monitored via electrocardiograms (ECG) and information such as heart rate (HR) and heart rate variability (HRV) are used as key health-related metrics. With many wearable devices, however, lower quality sensors are used, thus resulting in devices that are highly sensible to artifacts due to e.g., user's movement. The introduced artifacts hamper HR/HRV analyses, thus ECG enhancement has been the focus of recent research. Existing enhancement algorithms, however, do not perform well in very noisy conditions, as well as add additional computational processing to already battery-hungry wearable applications. Here, we propose to overcome these limitations by describing a new ECG signal representation called the modulation spectrum. By quantifying the rate-of-change of ECG spectral components, signal and artifactual components become separable, thus allowing for accurate HR and HRV measurement from the noisy signal, even in very extreme conditions typically seen in athletic performance training. The proposed MD-HRV (modulation-domain HRV) metric is tested with noise-corrupted synthetic ECG signals and is compared to ‘true’ HRV values obtained from the clean signals. Experimental results show the proposed metric significantly outperforming conventional HRV indices computed on both the noisy, as well as enhanced ECG signals processed by a state-of-the-art wavelet-based algorithm. The obtained findings suggest that the proposed metric is well suited for wearable applications, particularly those involved with intense movement (e.g., in elite athletic training).\",\"PeriodicalId\":249670,\"journal\":{\"name\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"volume\":\"170 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BSN.2017.7936005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Conference on Wearable and Implantable Body Sensor Networks (BSN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BSN.2017.7936005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

可穿戴设备的使用正在迅速发展,具有代表性的应用范围从病人/运动员监测到压力/疲劳识别,再到所谓的量化自我运动。通常,心脏信息是通过心电图(ECG)监测的,心率(HR)和心率变异性(HRV)等信息被用作关键的健康相关指标。然而,对于许多可穿戴设备,使用的传感器质量较低,从而导致设备对诸如用户运动等人为因素高度敏感。引入的伪影妨碍了HR/HRV分析,因此ECG增强已成为最近研究的焦点。然而,现有的增强算法在非常嘈杂的条件下表现不佳,并且为已经非常耗电的可穿戴应用增加了额外的计算处理。在这里,我们建议通过描述一种称为调制谱的新的心电信号表示来克服这些限制。通过量化ECG频谱成分的变化率,信号和人工成分可以分离,从而允许从噪声信号中精确测量HR和HRV,即使在非常极端的条件下,通常在运动表现训练中也能看到。提出的MD-HRV(调制域HRV)度量用噪声破坏的合成心电信号进行测试,并与从干净信号中获得的“真实”HRV值进行比较。实验结果表明,所提出的指标明显优于传统的HRV指标,无论是在有噪声的情况下计算,还是通过最先进的基于小波的算法处理的增强心电信号。获得的研究结果表明,所提出的指标非常适合可穿戴应用,特别是那些涉及剧烈运动的应用(例如,在精英运动训练中)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improved heart rate variability measurement based on modulation spectral processing of noisy electrocardiogram signals
Wearable device usage is burgeoning, with representative applications ranging from patient/athelete monitoring to stress/fatigue identification to the so-called quantified self movement. Typically, cardiac information is monitored via electrocardiograms (ECG) and information such as heart rate (HR) and heart rate variability (HRV) are used as key health-related metrics. With many wearable devices, however, lower quality sensors are used, thus resulting in devices that are highly sensible to artifacts due to e.g., user's movement. The introduced artifacts hamper HR/HRV analyses, thus ECG enhancement has been the focus of recent research. Existing enhancement algorithms, however, do not perform well in very noisy conditions, as well as add additional computational processing to already battery-hungry wearable applications. Here, we propose to overcome these limitations by describing a new ECG signal representation called the modulation spectrum. By quantifying the rate-of-change of ECG spectral components, signal and artifactual components become separable, thus allowing for accurate HR and HRV measurement from the noisy signal, even in very extreme conditions typically seen in athletic performance training. The proposed MD-HRV (modulation-domain HRV) metric is tested with noise-corrupted synthetic ECG signals and is compared to ‘true’ HRV values obtained from the clean signals. Experimental results show the proposed metric significantly outperforming conventional HRV indices computed on both the noisy, as well as enhanced ECG signals processed by a state-of-the-art wavelet-based algorithm. The obtained findings suggest that the proposed metric is well suited for wearable applications, particularly those involved with intense movement (e.g., in elite athletic training).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Radiowave propagation characteristics of the intra-body channel at 2.38 GHz Smart-shoe self-powered by walking A personalized air quality sensing system - a preliminary study on assessing the air quality of London underground stations Unsupervised deep representation learning to remove motion artifacts in free-mode body sensor networks Quantifying postural instability in Parkinsonian gait from inertial sensor data during standardised clinical gait tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1