带有对话界面的自动化偏差:用户确认解析错误的信息

Erin G. Zaroukian, J. Bakdash, A. Preece, William M. Webberley
{"title":"带有对话界面的自动化偏差:用户确认解析错误的信息","authors":"Erin G. Zaroukian, J. Bakdash, A. Preece, William M. Webberley","doi":"10.1109/COGSIMA.2017.7929605","DOIUrl":null,"url":null,"abstract":"We investigate automation bias for confirming erroneous information with a conversational interface. Participants in our studies used a conversational interface to report information in a simulated intelligence, surveillance, and reconnaissance (ISR) task. In the task, for flexibility and ease of use, participants reported information to the conversational agent in natural language. Then, the conversational agent interpreted the user's reports in a human- and machine-readable language. Next, participants could accept or reject the agent's interpretation. Misparses occur when the agent incorrectly interprets the report and the user erroneously accepts it. We hypothesize that the misparses naturally occur in the experiment due to automation bias and complacency because the agent interpretation was generally correct (92%). These errors indicate some users were unable to maintain situation awareness using the conversational interface. Our results illustrate concerns for implementing a flexible conversational interface in safety critical environments (e.g., military, emergency operations).","PeriodicalId":252066,"journal":{"name":"2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)","volume":"570 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Automation bias with a conversational interface: User confirmation of misparsed information\",\"authors\":\"Erin G. Zaroukian, J. Bakdash, A. Preece, William M. Webberley\",\"doi\":\"10.1109/COGSIMA.2017.7929605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate automation bias for confirming erroneous information with a conversational interface. Participants in our studies used a conversational interface to report information in a simulated intelligence, surveillance, and reconnaissance (ISR) task. In the task, for flexibility and ease of use, participants reported information to the conversational agent in natural language. Then, the conversational agent interpreted the user's reports in a human- and machine-readable language. Next, participants could accept or reject the agent's interpretation. Misparses occur when the agent incorrectly interprets the report and the user erroneously accepts it. We hypothesize that the misparses naturally occur in the experiment due to automation bias and complacency because the agent interpretation was generally correct (92%). These errors indicate some users were unable to maintain situation awareness using the conversational interface. Our results illustrate concerns for implementing a flexible conversational interface in safety critical environments (e.g., military, emergency operations).\",\"PeriodicalId\":252066,\"journal\":{\"name\":\"2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)\",\"volume\":\"570 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COGSIMA.2017.7929605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Cognitive and Computational Aspects of Situation Management (CogSIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COGSIMA.2017.7929605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们调查自动化偏差确认错误的信息与对话界面。在我们的研究中,参与者使用会话界面在模拟情报、监视和侦察(ISR)任务中报告信息。在任务中,为了灵活性和易用性,参与者用自然语言向会话代理报告信息。然后,会话代理用人类和机器可读的语言解释用户的报告。接下来,参与者可以接受或拒绝代理人的解释。当代理错误地解释报告而用户错误地接受报告时,就会出现解析错误。我们假设由于自动化偏差和自满,错误解析在实验中自然发生,因为代理解释通常是正确的(92%)。这些错误表明一些用户无法使用会话界面来维持态势感知。我们的研究结果说明了在安全关键环境(例如,军事、紧急行动)中实现灵活对话界面的关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automation bias with a conversational interface: User confirmation of misparsed information
We investigate automation bias for confirming erroneous information with a conversational interface. Participants in our studies used a conversational interface to report information in a simulated intelligence, surveillance, and reconnaissance (ISR) task. In the task, for flexibility and ease of use, participants reported information to the conversational agent in natural language. Then, the conversational agent interpreted the user's reports in a human- and machine-readable language. Next, participants could accept or reject the agent's interpretation. Misparses occur when the agent incorrectly interprets the report and the user erroneously accepts it. We hypothesize that the misparses naturally occur in the experiment due to automation bias and complacency because the agent interpretation was generally correct (92%). These errors indicate some users were unable to maintain situation awareness using the conversational interface. Our results illustrate concerns for implementing a flexible conversational interface in safety critical environments (e.g., military, emergency operations).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rightward attentional bias in windshield displays: Implication towards external human machine interfaces for self-driving cars Situation-based ontologies for a computational framework for identity focusing on crime scenes Automation bias with a conversational interface: User confirmation of misparsed information Using context and robot-human communication to resolve unexpected situational conflicts A model based on rough sets for situation comprehension and projection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1