基于目标池化的R-CNN低分辨率行人检测算法研究与建议

Peng Shi, Jun Wu, Kai Wang, Yao Zhang, Jiapei Wang, Juneho Yi
{"title":"基于目标池化的R-CNN低分辨率行人检测算法研究与建议","authors":"Peng Shi, Jun Wu, Kai Wang, Yao Zhang, Jiapei Wang, Juneho Yi","doi":"10.1109/IPTA.2018.8608142","DOIUrl":null,"url":null,"abstract":"We present an effective low-resolution pedestrian detection using targeted pooling and Region Proposal Network (RPN) in the Faster R-CNN. Our method firstly rearranges the anchor from the RPN exploiting an optimal hyper-parameter setting called \"Elaborate Setup\". Secondly, it refines the granularity in the pooling operation from the ROI pooling layer. The experimental results demonstrate that the proposed RPN together with fine-grained pooling, which we call LRPD-R-CNN is able to achieve high average precision and robust performance on the VOC 2007 dataset. This method has great potential in commercial values and wide application prospect in the field of computer vision, security and intelligent city.","PeriodicalId":272294,"journal":{"name":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Low-Resolution Pedestrian Detection Algorithms based on R-CNN with Targeted Pooling and Proposal\",\"authors\":\"Peng Shi, Jun Wu, Kai Wang, Yao Zhang, Jiapei Wang, Juneho Yi\",\"doi\":\"10.1109/IPTA.2018.8608142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an effective low-resolution pedestrian detection using targeted pooling and Region Proposal Network (RPN) in the Faster R-CNN. Our method firstly rearranges the anchor from the RPN exploiting an optimal hyper-parameter setting called \\\"Elaborate Setup\\\". Secondly, it refines the granularity in the pooling operation from the ROI pooling layer. The experimental results demonstrate that the proposed RPN together with fine-grained pooling, which we call LRPD-R-CNN is able to achieve high average precision and robust performance on the VOC 2007 dataset. This method has great potential in commercial values and wide application prospect in the field of computer vision, security and intelligent city.\",\"PeriodicalId\":272294,\"journal\":{\"name\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2018.8608142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Eighth International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2018.8608142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们在Faster R-CNN中使用目标池和区域建议网络(RPN)提出了一种有效的低分辨率行人检测方法。我们的方法首先利用一种称为“精细设置”的最优超参数设置来重新排列RPN中的锚。其次,从ROI池化层细化池化操作中的粒度。实验结果表明,本文提出的RPN与细粒度池(LRPD-R-CNN)相结合,能够在VOC 2007数据集上获得较高的平均精度和鲁棒性。该方法在计算机视觉、安防、智慧城市等领域具有巨大的潜在商业价值和广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Research on Low-Resolution Pedestrian Detection Algorithms based on R-CNN with Targeted Pooling and Proposal
We present an effective low-resolution pedestrian detection using targeted pooling and Region Proposal Network (RPN) in the Faster R-CNN. Our method firstly rearranges the anchor from the RPN exploiting an optimal hyper-parameter setting called "Elaborate Setup". Secondly, it refines the granularity in the pooling operation from the ROI pooling layer. The experimental results demonstrate that the proposed RPN together with fine-grained pooling, which we call LRPD-R-CNN is able to achieve high average precision and robust performance on the VOC 2007 dataset. This method has great potential in commercial values and wide application prospect in the field of computer vision, security and intelligent city.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Driver Drowsiness Detection in Facial Images InNet: Learning to Detect Shadows with Injection Network Image Classification Method in DR Image Based on Transfer Learning Video Tracking of Insect Flight Path: Towards Behavioral Assessment Image Registration Algorithm Based on Super pixel Segmentation and SURF Feature Points
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1