Harris四元数用于多光谱关键点检测

Giorgos Sfikas, D. Ioannidis, D. Tzovaras
{"title":"Harris四元数用于多光谱关键点检测","authors":"Giorgos Sfikas, D. Ioannidis, D. Tzovaras","doi":"10.1109/ICIP40778.2020.9191302","DOIUrl":null,"url":null,"abstract":"We present a new keypoint detection method that generalizes Harris corners for multispectral images by considering the input as a quaternionic matrix. Standard keypoint detectors run on scalar-valued inputs, neglecting input multimodality and potentially missing highly distinctive features. The proposed detector uses information from all channel inputs by defining a quaternionic autocorrelation matrix that possesses quaternionic eigenvectors and real eigenvalues, for the computation of which channel cross-correlations are also taken into account. We have tested the proposed detector on a variety of multispectral images (color, near-infrared), where we have validated its usefulness.","PeriodicalId":405734,"journal":{"name":"2020 IEEE International Conference on Image Processing (ICIP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Quaternion Harris For Multispectral Keypoint Detection\",\"authors\":\"Giorgos Sfikas, D. Ioannidis, D. Tzovaras\",\"doi\":\"10.1109/ICIP40778.2020.9191302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new keypoint detection method that generalizes Harris corners for multispectral images by considering the input as a quaternionic matrix. Standard keypoint detectors run on scalar-valued inputs, neglecting input multimodality and potentially missing highly distinctive features. The proposed detector uses information from all channel inputs by defining a quaternionic autocorrelation matrix that possesses quaternionic eigenvectors and real eigenvalues, for the computation of which channel cross-correlations are also taken into account. We have tested the proposed detector on a variety of multispectral images (color, near-infrared), where we have validated its usefulness.\",\"PeriodicalId\":405734,\"journal\":{\"name\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Image Processing (ICIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIP40778.2020.9191302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP40778.2020.9191302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

提出了一种基于四元数矩阵的多光谱图像关键点检测方法。标准的关键点检测器在标量值输入上运行,忽略了输入的多模态,可能会错过高度显著的特征。该检测器通过定义具有四元数特征向量和实特征值的四元数自相关矩阵来利用来自所有信道输入的信息,该矩阵的计算也考虑了信道互相关。我们已经在各种多光谱图像(彩色,近红外)上测试了所提出的探测器,验证了其实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quaternion Harris For Multispectral Keypoint Detection
We present a new keypoint detection method that generalizes Harris corners for multispectral images by considering the input as a quaternionic matrix. Standard keypoint detectors run on scalar-valued inputs, neglecting input multimodality and potentially missing highly distinctive features. The proposed detector uses information from all channel inputs by defining a quaternionic autocorrelation matrix that possesses quaternionic eigenvectors and real eigenvalues, for the computation of which channel cross-correlations are also taken into account. We have tested the proposed detector on a variety of multispectral images (color, near-infrared), where we have validated its usefulness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Adversarial Active Learning With Model Uncertainty For Image Classification Emotion Transformation Feature: Novel Feature For Deception Detection In Videos Object Segmentation In Electrical Impedance Tomography For Tactile Sensing A Syndrome-Based Autoencoder For Point Cloud Geometry Compression A Comparison Of Compressed Sensing And Dnn Based Reconstruction For Ghost Motion Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1