基于约束选择的半监督特征选择

Mohammed Hindawi, Kais Allab, K. Benabdeslem
{"title":"基于约束选择的半监督特征选择","authors":"Mohammed Hindawi, Kais Allab, K. Benabdeslem","doi":"10.1109/ICDM.2011.42","DOIUrl":null,"url":null,"abstract":"In this paper, we present a novel feature selection approach based on an efficient selection of pair wise constraints. This aims at selecting the most coherent constraints extracted from labeled part of data. The relevance of features is then evaluated according to their efficient locality preserving and chosen constraint preserving ability. Finally, experimental results are provided for validating our proposal with respect to other known feature selection methods.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Constraint Selection-Based Semi-supervised Feature Selection\",\"authors\":\"Mohammed Hindawi, Kais Allab, K. Benabdeslem\",\"doi\":\"10.1109/ICDM.2011.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a novel feature selection approach based on an efficient selection of pair wise constraints. This aims at selecting the most coherent constraints extracted from labeled part of data. The relevance of features is then evaluated according to their efficient locality preserving and chosen constraint preserving ability. Finally, experimental results are provided for validating our proposal with respect to other known feature selection methods.\",\"PeriodicalId\":106216,\"journal\":{\"name\":\"2011 IEEE 11th International Conference on Data Mining\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 11th International Conference on Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDM.2011.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

在本文中,我们提出了一种新的基于对约束的有效选择的特征选择方法。其目的是从数据的标记部分中选择最一致的约束。然后根据特征的有效局部保持能力和选择约束保持能力来评估特征的相关性。最后,实验结果验证了我们的建议相对于其他已知的特征选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Constraint Selection-Based Semi-supervised Feature Selection
In this paper, we present a novel feature selection approach based on an efficient selection of pair wise constraints. This aims at selecting the most coherent constraints extracted from labeled part of data. The relevance of features is then evaluated according to their efficient locality preserving and chosen constraint preserving ability. Finally, experimental results are provided for validating our proposal with respect to other known feature selection methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nonnegative Matrix Tri-factorization Based High-Order Co-clustering and Its Fast Implementation Helix: Unsupervised Grammar Induction for Structured Activity Recognition Partitionable Kernels for Mapping Kernels Multi-task Learning for Bayesian Matrix Factorization Discovering the Intrinsic Cardinality and Dimensionality of Time Series Using MDL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1