{"title":"实时,逼真的全身3D重建和纹理映射从多个kinect","authors":"D. Alexiadis, D. Zarpalas, P. Daras","doi":"10.1109/IVMSPW.2013.6611939","DOIUrl":null,"url":null,"abstract":"Multi-party 3D Tele-Immersive (TI) environments, supporting realistic interaction among distant users, is the future of tele-conferencing. Real-time, full-body 3D reconstruction, an important task for TI applications, is addressed in this paper. A volumetric method for the reconstruction of watertight models of moving humans is presented, along with details for appropriate texture-mapping to enhance the visual quality. The reconstruction uses the input from multiple consumer depth cameras and specifically Kinect sensors. The presented results verify the effectiveness of the proposed methodologies, with respect to the visual quality and frame rates.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":"{\"title\":\"Real-time, realistic full-body 3D reconstruction and texture mapping from multiple Kinects\",\"authors\":\"D. Alexiadis, D. Zarpalas, P. Daras\",\"doi\":\"10.1109/IVMSPW.2013.6611939\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-party 3D Tele-Immersive (TI) environments, supporting realistic interaction among distant users, is the future of tele-conferencing. Real-time, full-body 3D reconstruction, an important task for TI applications, is addressed in this paper. A volumetric method for the reconstruction of watertight models of moving humans is presented, along with details for appropriate texture-mapping to enhance the visual quality. The reconstruction uses the input from multiple consumer depth cameras and specifically Kinect sensors. The presented results verify the effectiveness of the proposed methodologies, with respect to the visual quality and frame rates.\",\"PeriodicalId\":170714,\"journal\":{\"name\":\"IVMSP 2013\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"31\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IVMSP 2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVMSPW.2013.6611939\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Real-time, realistic full-body 3D reconstruction and texture mapping from multiple Kinects
Multi-party 3D Tele-Immersive (TI) environments, supporting realistic interaction among distant users, is the future of tele-conferencing. Real-time, full-body 3D reconstruction, an important task for TI applications, is addressed in this paper. A volumetric method for the reconstruction of watertight models of moving humans is presented, along with details for appropriate texture-mapping to enhance the visual quality. The reconstruction uses the input from multiple consumer depth cameras and specifically Kinect sensors. The presented results verify the effectiveness of the proposed methodologies, with respect to the visual quality and frame rates.