V. Arvind, Frank Fuhlbrück, J. Köbler, Sebastian Kuhnert, Gaurav Rattan
{"title":"图中定数与顶点个性化的参数化复杂度","authors":"V. Arvind, Frank Fuhlbrück, J. Köbler, Sebastian Kuhnert, Gaurav Rattan","doi":"10.1145/3558077","DOIUrl":null,"url":null,"abstract":"In this paper we study the algorithmic complexity of the following problems: (1) Given a vertex-colored graph X = (V,E,c), compute a minimum cardinality set of vertices S⊆ V such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem is computing a minimum base S for a permutation group G ≤ Sym(n) given by generators, i.e., a minimum cardinality subset S ⊆ [n] such that no nontrivial permutation in G fixes all elements of S. Our focus is mainly on the parameterized complexity of these problems. We show that when k=|S| is treated as parameter, then both problems are MINI[1]-hard. For the dual problems, where k = n – |S| is the parameter, we give FPT algorithms.(2) A notion related to fixing is individualization, which is a useful technique combined with the Weisfeiler-Leman procedure in algorithms for Graph Isomorphism. We explore the complexity of individualization: the problem of computing the minimum number of vertices we need to individualize in a given graph such that color refinement results in a graph with useful structural properties in the context of Graph Isomorphism and the Weisfeiler-Leman procedure.","PeriodicalId":198744,"journal":{"name":"ACM Transactions on Computation Theory (TOCT)","volume":"606 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Parameterized Complexity of Fixing Number and Vertex Individualization in Graphs\",\"authors\":\"V. Arvind, Frank Fuhlbrück, J. Köbler, Sebastian Kuhnert, Gaurav Rattan\",\"doi\":\"10.1145/3558077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study the algorithmic complexity of the following problems: (1) Given a vertex-colored graph X = (V,E,c), compute a minimum cardinality set of vertices S⊆ V such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem is computing a minimum base S for a permutation group G ≤ Sym(n) given by generators, i.e., a minimum cardinality subset S ⊆ [n] such that no nontrivial permutation in G fixes all elements of S. Our focus is mainly on the parameterized complexity of these problems. We show that when k=|S| is treated as parameter, then both problems are MINI[1]-hard. For the dual problems, where k = n – |S| is the parameter, we give FPT algorithms.(2) A notion related to fixing is individualization, which is a useful technique combined with the Weisfeiler-Leman procedure in algorithms for Graph Isomorphism. We explore the complexity of individualization: the problem of computing the minimum number of vertices we need to individualize in a given graph such that color refinement results in a graph with useful structural properties in the context of Graph Isomorphism and the Weisfeiler-Leman procedure.\",\"PeriodicalId\":198744,\"journal\":{\"name\":\"ACM Transactions on Computation Theory (TOCT)\",\"volume\":\"606 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Computation Theory (TOCT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3558077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Computation Theory (TOCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3558077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Parameterized Complexity of Fixing Number and Vertex Individualization in Graphs
In this paper we study the algorithmic complexity of the following problems: (1) Given a vertex-colored graph X = (V,E,c), compute a minimum cardinality set of vertices S⊆ V such that no nontrivial automorphism of X fixes all vertices in S. A closely related problem is computing a minimum base S for a permutation group G ≤ Sym(n) given by generators, i.e., a minimum cardinality subset S ⊆ [n] such that no nontrivial permutation in G fixes all elements of S. Our focus is mainly on the parameterized complexity of these problems. We show that when k=|S| is treated as parameter, then both problems are MINI[1]-hard. For the dual problems, where k = n – |S| is the parameter, we give FPT algorithms.(2) A notion related to fixing is individualization, which is a useful technique combined with the Weisfeiler-Leman procedure in algorithms for Graph Isomorphism. We explore the complexity of individualization: the problem of computing the minimum number of vertices we need to individualize in a given graph such that color refinement results in a graph with useful structural properties in the context of Graph Isomorphism and the Weisfeiler-Leman procedure.