基于渐近贝叶斯理论的模型选择

P. Djurić
{"title":"基于渐近贝叶斯理论的模型选择","authors":"P. Djurić","doi":"10.1109/SSAP.1994.572419","DOIUrl":null,"url":null,"abstract":"The two most popular model selection rules in the signal processing literature are the Akaike’s criterion AIC and the Rissanen’s principle of minimum description length (MDL). These rules are similar in form in that they both consist of data and penalty terms. Their data terms are identical, while the penalties are different, the MDL being more stringent towards overparameterization. The two rules, however, penalize for each additional model parameter with an equal incremental amount of penalty, regardless of the parame ter’s role in the model. In this paper we attempt to show that this should not be the case. We derive an asymptotical maximum a posteriori (MAP) rule with more accurate penalties and provide simulation results that show improved performance of the so derived rule over the AIC and MDL.","PeriodicalId":151571,"journal":{"name":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Model Selection Based On Asymptotic Bayes Theory\",\"authors\":\"P. Djurić\",\"doi\":\"10.1109/SSAP.1994.572419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The two most popular model selection rules in the signal processing literature are the Akaike’s criterion AIC and the Rissanen’s principle of minimum description length (MDL). These rules are similar in form in that they both consist of data and penalty terms. Their data terms are identical, while the penalties are different, the MDL being more stringent towards overparameterization. The two rules, however, penalize for each additional model parameter with an equal incremental amount of penalty, regardless of the parame ter’s role in the model. In this paper we attempt to show that this should not be the case. We derive an asymptotical maximum a posteriori (MAP) rule with more accurate penalties and provide simulation results that show improved performance of the so derived rule over the AIC and MDL.\",\"PeriodicalId\":151571,\"journal\":{\"name\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-06-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Seventh SP Workshop on Statistical Signal and Array Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSAP.1994.572419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Seventh SP Workshop on Statistical Signal and Array Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSAP.1994.572419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

信号处理文献中最流行的两种模型选择规则是赤池准则AIC和最小描述长度原理(MDL)。这些规则在形式上是相似的,因为它们都由数据和处罚条款组成。它们的数据项是相同的,而惩罚是不同的,MDL对过度参数化更加严格。然而,无论参数在模型中的角色如何,这两条规则都会对每个额外的模型参数进行同等增量的惩罚。在本文中,我们试图证明情况并非如此。我们推导了一个具有更精确惩罚的渐近最大后验(MAP)规则,并提供了仿真结果,表明该规则比AIC和MDL的性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Model Selection Based On Asymptotic Bayes Theory
The two most popular model selection rules in the signal processing literature are the Akaike’s criterion AIC and the Rissanen’s principle of minimum description length (MDL). These rules are similar in form in that they both consist of data and penalty terms. Their data terms are identical, while the penalties are different, the MDL being more stringent towards overparameterization. The two rules, however, penalize for each additional model parameter with an equal incremental amount of penalty, regardless of the parame ter’s role in the model. In this paper we attempt to show that this should not be the case. We derive an asymptotical maximum a posteriori (MAP) rule with more accurate penalties and provide simulation results that show improved performance of the so derived rule over the AIC and MDL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hopfield Network Approach to Beamforrning in Spread Spectrum Communication A Comparative Study of Statistical and Neural DOA Estimation Techniques A New Cumulant Based Phase Estimation Nonminimum-phase Systems By Allpass Study of the Couple (Reflection Coefficient, K-Nn Rule) An N-D Technique for Coherent Wave Doa Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1