基于梯度和距离信息的区域立体匹配方法

Yong-Jun Chang, Yo-Sung Ho
{"title":"基于梯度和距离信息的区域立体匹配方法","authors":"Yong-Jun Chang, Yo-Sung Ho","doi":"10.1109/APSIPA.2016.7820897","DOIUrl":null,"url":null,"abstract":"Stereo matching methods estimate depth information of captured images. One way to estimate accurate depth values is to use the distance information. This method enhances the disparity map by preserving the edge region. In order to preserve the depth discontinuity near the edge region, it uses the distance information as a new weighting value for the matching cost function. However, this method has a high complexity problem. To overcome this problem, we propose region based stereo matching method with gradient and distance information. Since the distance transform calculates the pixel distance from the edge region, we can classify whether the pixel is near the edge region or not. In other words, some regions near the edge have small distance transformed values. For this reason, our method divides regions depending on the value of distance transformed pixel. After that, different cost functions are applied to each region for improving the computation efficiency.","PeriodicalId":409448,"journal":{"name":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Region based stereo matching method with gradient and distance information\",\"authors\":\"Yong-Jun Chang, Yo-Sung Ho\",\"doi\":\"10.1109/APSIPA.2016.7820897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stereo matching methods estimate depth information of captured images. One way to estimate accurate depth values is to use the distance information. This method enhances the disparity map by preserving the edge region. In order to preserve the depth discontinuity near the edge region, it uses the distance information as a new weighting value for the matching cost function. However, this method has a high complexity problem. To overcome this problem, we propose region based stereo matching method with gradient and distance information. Since the distance transform calculates the pixel distance from the edge region, we can classify whether the pixel is near the edge region or not. In other words, some regions near the edge have small distance transformed values. For this reason, our method divides regions depending on the value of distance transformed pixel. After that, different cost functions are applied to each region for improving the computation efficiency.\",\"PeriodicalId\":409448,\"journal\":{\"name\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2016.7820897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2016.7820897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

立体匹配方法估计捕获图像的深度信息。估计准确深度值的一种方法是使用距离信息。该方法通过保留边缘区域来增强视差图。为了保持边缘区域附近的深度不连续,它使用距离信息作为匹配代价函数的新的加权值。然而,这种方法有一个高复杂度的问题。为了克服这一问题,我们提出了一种基于梯度和距离信息的区域立体匹配方法。由于距离变换计算的是像素到边缘区域的距离,所以我们可以对像素是否靠近边缘区域进行分类。换句话说,边缘附近的一些区域具有较小的距离变换值。因此,我们的方法根据距离变换像素的值来划分区域。然后,在每个区域应用不同的代价函数,以提高计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Region based stereo matching method with gradient and distance information
Stereo matching methods estimate depth information of captured images. One way to estimate accurate depth values is to use the distance information. This method enhances the disparity map by preserving the edge region. In order to preserve the depth discontinuity near the edge region, it uses the distance information as a new weighting value for the matching cost function. However, this method has a high complexity problem. To overcome this problem, we propose region based stereo matching method with gradient and distance information. Since the distance transform calculates the pixel distance from the edge region, we can classify whether the pixel is near the edge region or not. In other words, some regions near the edge have small distance transformed values. For this reason, our method divides regions depending on the value of distance transformed pixel. After that, different cost functions are applied to each region for improving the computation efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bilateral hemiface feature representation learning for pose robust facial expression recognition Voice-pathology analysis based on AR-HMM Locality sensitive discriminant analysis for speaker verification On the training of DNN-based average voice model for speech synthesis A study on target feature activation and normalization and their impacts on the performance of DNN based speech dereverberation systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1