动态频谱分布的实用冲突图

Xia Zhou, Zengbin Zhang, G. Wang, Xiaoxiao Yu, Ben Y. Zhao, Haitao Zheng
{"title":"动态频谱分布的实用冲突图","authors":"Xia Zhou, Zengbin Zhang, G. Wang, Xiaoxiao Yu, Ben Y. Zhao, Haitao Zheng","doi":"10.1145/2465529.2465545","DOIUrl":null,"url":null,"abstract":"Most spectrum distribution proposals today develop their allocation algorithms that use conflict graphs to capture interference relationships. The use of conflict graphs, however, is often questioned by the wireless community because of two issues. First, building conflict graphs requires significant overhead and hence generally does not scale to outdoor networks, and second, the resulting conflict graphs do not capture accumulative interference. In this paper, we use large-scale measurement data as ground truth to understand just how severe these issues are in practice, and whether they can be overcome. We build \"practical\" conflict graphs using measurement-calibrated propagation models, which remove the need for exhaustive signal measurements by interpolating signal strengths using calibrated models. These propagation models are imperfect, and we study the impact of their errors by tracing the impact on multiple steps in the process, from calibrating propagation models to predicting signal strength and building conflict graphs. At each step, we analyze the introduction, propagation and final impact of errors, by comparing each intermediate result to its ground truth counterpart generated from measurements. Our work produces several findings. Calibrated propagation models generate location-dependent prediction errors, ultimately producing conservative conflict graphs. While these \"estimated conflict graphs\" lose some spectrum utilization, their conservative nature improves reliability by reducing the impact of accumulative interference. Finally, we propose a graph augmentation technique that addresses any remaining accumulative interference, the last missing piece in a practical spectrum distribution system using measurement-calibrated conflict graphs.","PeriodicalId":306456,"journal":{"name":"Measurement and Modeling of Computer Systems","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Practical conflict graphs for dynamic spectrum distribution\",\"authors\":\"Xia Zhou, Zengbin Zhang, G. Wang, Xiaoxiao Yu, Ben Y. Zhao, Haitao Zheng\",\"doi\":\"10.1145/2465529.2465545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Most spectrum distribution proposals today develop their allocation algorithms that use conflict graphs to capture interference relationships. The use of conflict graphs, however, is often questioned by the wireless community because of two issues. First, building conflict graphs requires significant overhead and hence generally does not scale to outdoor networks, and second, the resulting conflict graphs do not capture accumulative interference. In this paper, we use large-scale measurement data as ground truth to understand just how severe these issues are in practice, and whether they can be overcome. We build \\\"practical\\\" conflict graphs using measurement-calibrated propagation models, which remove the need for exhaustive signal measurements by interpolating signal strengths using calibrated models. These propagation models are imperfect, and we study the impact of their errors by tracing the impact on multiple steps in the process, from calibrating propagation models to predicting signal strength and building conflict graphs. At each step, we analyze the introduction, propagation and final impact of errors, by comparing each intermediate result to its ground truth counterpart generated from measurements. Our work produces several findings. Calibrated propagation models generate location-dependent prediction errors, ultimately producing conservative conflict graphs. While these \\\"estimated conflict graphs\\\" lose some spectrum utilization, their conservative nature improves reliability by reducing the impact of accumulative interference. Finally, we propose a graph augmentation technique that addresses any remaining accumulative interference, the last missing piece in a practical spectrum distribution system using measurement-calibrated conflict graphs.\",\"PeriodicalId\":306456,\"journal\":{\"name\":\"Measurement and Modeling of Computer Systems\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Measurement and Modeling of Computer Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2465529.2465545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement and Modeling of Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2465529.2465545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

目前大多数频谱分配方案都使用冲突图来捕获干扰关系。然而,由于两个问题,冲突图的使用经常受到无线社区的质疑。首先,构建冲突图需要大量开销,因此通常不能扩展到室外网络,其次,生成的冲突图不能捕获累积的干扰。在本文中,我们使用大规模测量数据作为基础事实,以了解这些问题在实践中的严重程度,以及它们是否可以克服。我们使用测量校准传播模型构建“实用”冲突图,该模型通过使用校准模型插值信号强度来消除对穷举信号测量的需要。这些传播模型是不完善的,我们通过跟踪其对过程中多个步骤的影响来研究其误差的影响,从校准传播模型到预测信号强度和构建冲突图。在每个步骤中,我们通过将每个中间结果与测量产生的基础真值相比较,分析误差的引入、传播和最终影响。我们的工作产生了几个发现。校准的传播模型产生位置依赖的预测误差,最终产生保守的冲突图。虽然这些“估计冲突图”损失了一些频谱利用率,但它们的保守性通过减少累积干扰的影响提高了可靠性。最后,我们提出了一种图形增强技术,该技术可以解决任何剩余的累积干扰,这是实际频谱分布系统中使用测量校准冲突图的最后缺失部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Practical conflict graphs for dynamic spectrum distribution
Most spectrum distribution proposals today develop their allocation algorithms that use conflict graphs to capture interference relationships. The use of conflict graphs, however, is often questioned by the wireless community because of two issues. First, building conflict graphs requires significant overhead and hence generally does not scale to outdoor networks, and second, the resulting conflict graphs do not capture accumulative interference. In this paper, we use large-scale measurement data as ground truth to understand just how severe these issues are in practice, and whether they can be overcome. We build "practical" conflict graphs using measurement-calibrated propagation models, which remove the need for exhaustive signal measurements by interpolating signal strengths using calibrated models. These propagation models are imperfect, and we study the impact of their errors by tracing the impact on multiple steps in the process, from calibrating propagation models to predicting signal strength and building conflict graphs. At each step, we analyze the introduction, propagation and final impact of errors, by comparing each intermediate result to its ground truth counterpart generated from measurements. Our work produces several findings. Calibrated propagation models generate location-dependent prediction errors, ultimately producing conservative conflict graphs. While these "estimated conflict graphs" lose some spectrum utilization, their conservative nature improves reliability by reducing the impact of accumulative interference. Finally, we propose a graph augmentation technique that addresses any remaining accumulative interference, the last missing piece in a practical spectrum distribution system using measurement-calibrated conflict graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Queueing delays in buffered multistage interconnection networks Data dissemination performance in large-scale sensor networks Index policies for a multi-class queue with convex holding cost and abandonments Neighbor-cell assisted error correction for MLC NAND flash memories Collecting, organizing, and sharing pins in pinterest: interest-driven or social-driven?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1