{"title":"进化神经阵列:学习复杂动作序列的新机制","authors":"Leonardo Corbalán, L. Lanzarini","doi":"10.19153/cleiej.6.1.5","DOIUrl":null,"url":null,"abstract":"\n \n \nIncremental evolution has proved to be an extremely useful mechanism in complex actions sequence learning. Its performance is based on the decomposition of the original problem into increasingly complex stages whose learning is carried out sequentially, starting from the simplest stage and thus increasing its generality and difficulty. \nThe present work proposes neural array applications as a novel mechanism for complex actions sequence learning. Each array is composed by several neural nets obtained by means of an evolving process allowing them to acquire various degrees of specialization. Neural nets constituting the same array are organized so that, in each assessment, there is only one in charge of its response. \nThe proposed strategy is applied to problems presented by obstacle evasion and target reaching as a means to show the capability of this proposal to solve complex problems. The measurements carried out show the superiority of evolving neural arrays over traditional neuroevolving methods that handle neural network populations – SANE is being particularly used as a comparative reference due to its high performance. \nNeural array capability to recover from previous defective evolving stages has been tested, evincing highly plausible final successful outcomes – even in those adverse cases. \nFinally, conclusions are presented as well as some future lines of work. \n \n \n","PeriodicalId":418941,"journal":{"name":"CLEI Electron. J.","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Evolving Neural Arrays A new mechanism for learning complex action sequences\",\"authors\":\"Leonardo Corbalán, L. Lanzarini\",\"doi\":\"10.19153/cleiej.6.1.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n \\n \\nIncremental evolution has proved to be an extremely useful mechanism in complex actions sequence learning. Its performance is based on the decomposition of the original problem into increasingly complex stages whose learning is carried out sequentially, starting from the simplest stage and thus increasing its generality and difficulty. \\nThe present work proposes neural array applications as a novel mechanism for complex actions sequence learning. Each array is composed by several neural nets obtained by means of an evolving process allowing them to acquire various degrees of specialization. Neural nets constituting the same array are organized so that, in each assessment, there is only one in charge of its response. \\nThe proposed strategy is applied to problems presented by obstacle evasion and target reaching as a means to show the capability of this proposal to solve complex problems. The measurements carried out show the superiority of evolving neural arrays over traditional neuroevolving methods that handle neural network populations – SANE is being particularly used as a comparative reference due to its high performance. \\nNeural array capability to recover from previous defective evolving stages has been tested, evincing highly plausible final successful outcomes – even in those adverse cases. \\nFinally, conclusions are presented as well as some future lines of work. \\n \\n \\n\",\"PeriodicalId\":418941,\"journal\":{\"name\":\"CLEI Electron. J.\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CLEI Electron. J.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.19153/cleiej.6.1.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CLEI Electron. J.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19153/cleiej.6.1.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evolving Neural Arrays A new mechanism for learning complex action sequences
Incremental evolution has proved to be an extremely useful mechanism in complex actions sequence learning. Its performance is based on the decomposition of the original problem into increasingly complex stages whose learning is carried out sequentially, starting from the simplest stage and thus increasing its generality and difficulty.
The present work proposes neural array applications as a novel mechanism for complex actions sequence learning. Each array is composed by several neural nets obtained by means of an evolving process allowing them to acquire various degrees of specialization. Neural nets constituting the same array are organized so that, in each assessment, there is only one in charge of its response.
The proposed strategy is applied to problems presented by obstacle evasion and target reaching as a means to show the capability of this proposal to solve complex problems. The measurements carried out show the superiority of evolving neural arrays over traditional neuroevolving methods that handle neural network populations – SANE is being particularly used as a comparative reference due to its high performance.
Neural array capability to recover from previous defective evolving stages has been tested, evincing highly plausible final successful outcomes – even in those adverse cases.
Finally, conclusions are presented as well as some future lines of work.